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Abstract—Next generation sequencing technologies have the
capability to provide large numbers of short reads inexpensively
and accurately. Researchers have proposed many different meth-
ods to align short reads to reference genomes. Nevertheless, long
repeats, which are known to be abundant in eukaryotic genomes,
have caused considerable difficulty for genome assembly methods
that rely on short-read alignment. Although a few researchers
have studied sequence complexity of genomes in terms of repeats,
none have quantitatively related such complexity to the difficulty
of short read alignment and assembly. In this paper, we investi-
gate several measures of genome sequence complexity with the
goal of quantifying the difficulty of short read alignment. Using
genomic data from 17 different organisms and testing against
12 state-of-the-art short-read aligners, we found a very strong
correlation between the performance of virtually all of these
aligners and measures of genome sequence complexity. Further,
we show how these measures might be used to analyze and predict
the performance of aligners, and more importantly, select the best
aligners for specific genomes.

Index Terms—genome complexity, short-read alignment, ge-
nomic analysis

I. INTRODUCTION

Modern sequencing technologies provide high volumes of
raw data with increasingly high accuracy and longer read
length. These advances have encouraged many different com-
putational approaches to address the problem of short read
alignment and assembly. To improve alignment speed, align-
ment algorithms typically index the genome or reads, and
utilize advanced data structures such suffix trees, suffix arrays,
FM-indexing, hash tables, and g-gram indexing [1].

Although there are many different approaches, the align-
ment and assembly problem remains challenging due to the
presence of many long repeats in genomes [2]. This is partic-
ularly true of the human genome [3]. With current sequencing
technologies, reads are typically much shorter than repeats,
causing aligners to fail to align or misalign reads, resulting in
large gapped/unaligned regions.

Becher [4] studied the complexity of general strings and
derived several interesting properties. Whiteford [5] and Kurtz
[6] formulated different ways to study the sequence com-
plexity of genomes, especially in terms of repeat elements
and unique k-mers. These works focus on visualizing and
describing the complexity of genomes in general. Yu [7]
evaluated the alignment performance of four aligners on a
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few repetitive regions selected from CpG islands, but did not
provide deep analyses or conclusions beyond the generally
known view that long repeats degrade alignment performance.
A challenge for choosing the best aligner for a set of genomes
of interest is the fact that an aligner can be superior for certain
types of genomes and reads (with specific ranges of lengths
from different technologies), but becomes inferior for other
types of genomes or reads [8]. In practice, the adoption of
aligners can be based on limited anecdotal evidence without
firm knowledge of how accurately they will perform on new
genomes. Even if one adopts a generally very good aligner,
its alignment accuracy on new genomes is probably not well
understood [9, 10, 11], potentially resulting in expensive ex-
perimental designs, e.g. requiring unnecessarily high numbers
of reads aimed to cover the entire genome [12]. Thus, there
is a practical need to thoroughly understand the accuracy of
aligners.

Short-reads might not be exact substrings of the reference
genome and their alignment to the reference might be obtained
approximately. To align millions of reads efficiently [13, 14,
15], a common strategy taken by most recent aligners includes
two main steps. In the first step, given a read, exact matches
between a substring of the read (call a seed) and the reference
genome are found. In the next step, seeds are extended to ac-
count for approximate matching between the read and regions
of the genome. If a read matches identically to the genome and
occurs only once in the genome, the alignment is easy. On the
other hand, if a read matches approximately to a substring
of the genome, and this substring occurs several times or
matches approximately to many substrings of the genome,
the alignment of the read is likely challenging. Although
new and improved methods are constantly introduced, the
problem of aligning short-reads to reference genomes remains
intrinsically challenging due to the fact that genomic repeats
are much longer than reads. For instance, Yu [7] evaluated
alignment performance of several aligners on repetitive regions
and concluded that long repeats seriously degraded alignment
performance.

In this paper, we investigate three formulations of genome
sequence complexity, defined in terms of distinct substrings
and repeats, especially at specific read lengths. Our formu-
lations are slightly different from the existing ones, because

312

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on December 22,2020 at 17:56:51 UTC from IEEE Xplore. Restrictions apply.



we aim to utilize these formulations to analyze the difficulty
of short-read alignment and assembly. These formulations can
be computed efficiently in linear time relative to the size of a
genome. Through an extensive analysis of 12 state of the art
aligners, we show that these formulations of genome sequence
complexity correlate highly with the performance of short-
read alignment. Consequently, genomes can be ranked and
cataloged in terms of how hard it is to align short reads to
them, and ultimately how hard it is to assemble them. Further,
based on this result, we show how to predict the performance
of alignment algorithms and how to select the best aligners for
specific genomes. These results help deepen the understanding
of genome sequence complexity and bring practical benefits
to researchers who are interested in short-read alignment and
genome assembly.

II. METHOD
A. Complexity of genomes
Given a sequence g, denote the number of occurrences of a
string = in g as f(x). f(«) > 0 if and only if x is a substring
of g. If f(x) > 1, we call x a repeatr. The lengths of g and

x are denoted as |g| and |z|, respectively. We define three
measures of complexity for g as follows:

2-[{z: f(z) > 0}|

Dy FRCED

o L f@) > 0 = By
9 lg| —k+1

RF — Zf(r)>1f(x)

9 gl —k+1

We refer to D, as the density of distinct substrings of g,
D’; as the density of distinct k-substrings of g, and R’; as
the density of k-repeats of g. Since the number of distinct
substrings is maximally |g|(]g| + 1)/2 and the number of
substrings of length & is maximally |g| —k+ 1. These densities
are between 0 and 1. While Dy is not specific to a particular
value k, D¥ and R’g€ target specific values of read lengths. Both
Dy and Dg are directly proportional, whereas R’; is inversely
proportional to the number of repeats in g.

We contend that these densities capture different aspects of
the complexity of g, especially in terms of how hard it is to
align short reads to a genome. In particular, these densities
are defined so that they are proportional to the probability of
correctly aligning reads to genomes. Dy is similar to the notion
of I-complexity introduced by [4]. The main difference is that
I-complexity is defined using discrete derivative log functions,
making this measure essentially exponentially smaller than
D,. The advantage of D, is apparent later when it is linearly
correlated with the performance of short-read aligners.

DF is similar to the k-mer occurrence ratio, py 1 (1,]g] —
k 4+ 1), introduced by [6]. The difference is that while p is
normalized (or divided) by | D/, D’g€ is normalized (or divided)
by |g| — k + 1. Although this difference appears minute, it is
actually an important distinction as Dg correlates better with
the probability of correctly aligning short reads to genomes.

R’; is related to the function C'(k, ) defined by [5] to be the
number of k-substrings that repeat exactly r times; i.e. R’; =
> r>1C(k,r). The authors were mainly interested in using
C(k,r) to visualize genome sequence complexity, rather than
relating complexity to the difficulty of aligning and assembling
short reads, which is the goal of defining R’;.

B. Computation of repeat density and distinct substring den-
sity

The computation of Dy, D’;, and R’; can be done efficiently
in linear time and space using suffix arrays and Longest
Common Prefix (LCP) arrays. The suffix array S of g¢
stores implicitly lexicographically sorted suffixes of g; i.e.
for i < j, gspi...|q)» the suffix of g starting at index S[i], is
lexicographically smaller than gg(;)... |, the suffix of g starting
at index S[j].

LCPJi] is defined to be the length of the longest common
prefix of gg[;_1)...|g| and gg;)... |- The construction of S and
LCP can be done in linear time. We now show that the
numbers of distinct substrings, distinct k-substrings, and k-
repeats can be computed in linear time by traversing the LC P
array.

‘lgl>

C. Correlation of sequence complexity of genomes and diffi-
culty of alignment

When a genome has either low distinct substring densities
(Dg and DY) or high repeat density (R), the probability that
a random substring will be mapped to multiple locations of the
genome will be higher, making it difficult to identify correct
locations of substrings even if other information is incorpo-
rated. Although reads are synthesized from unknown genomes
and then aligned to reference genomes, these genomes are
expected to be very similar as they belong to the same species.
Thus, we expect that D,, D’;, and R’g have a direct effect on
how hard it is to align short reads (of unknown genomes) to
reference genomes.

To quantify the effect of genome sequence complexity on
the difficulty of aligning short reads to reference genomes, we
may correlate the densities Dy, DS, and R";’ to the performance
of different short-read alignment algorithms. The performance
of an alignment algorithm can be described in terms of
precision and recall:

tp tp
tp+ fp tp+ fn

where ¢p is the number of correctly aligned reads, fp is the
number of incorrectly aligned reads, and fn is the sum of
incorrectly aligned reads and unaligned reads; in effect, tp+ fn
is equal to the total number of reads.

As we shall show in Section III, Dg,Dg, and R’gC are
highly correlated with precision and/or recall of all aligners
we tested. This validates their usefulness as measures of
genome sequence complexity, especially in the context of
alignment and assembly. Further, these correlations can help
us construct linear models of alignment performance so that
the best aligners can be adopted for specific genomes.

Precision =

Recall =
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III. EXPERIMENTS AND RESULTS
A. Data

We conducted our experiments on the genomic data of 17
prokaryotic & eukryotic species taken from the NCBI, EBI,
and Ensembl databases. This data was selected based on its
size and a diversity of complexity (Table I). Reads of lengths
100, 200, and 400 were simulated using the WGSIM pro-
gram, part of the SAMtool package [16]. These lengths were
selected as they represent the typical read lengths of current
technologies. We applied the default setting of WGSIM with
an error rate of 0.02 per base and 0.15 indel polymorphisms.
We used 2x coverage across the datasets; coverage does not
affect alignment quality as much as it affects assembly quality.
Table II shows the values of Dy, D;f, R’;‘ for these genomes.
For D’; and R’; , the values were computed at k£ equal to read
lengths 100, 200, and 400, respectively.

TABLE I: Genomic data from 17 species used as test data

¢ID  Genome Accession # Size (bp)
1 Caenorhabditis elegans Bristol N2 BX284601 251,136
2 Canis lupus familiaris chr. 1 CMO000001 122,678,785
3 Drosophila yakuba strain chr. 2L CMO000157 22,324,452
4 Bos taurus chr. 1 CMO000177 161,428,367
5 Mus musculus chr. 1 CMO000209 199,526,509
6 Equus caballus chr. 1 CMO000377 185,838,109
7 Taeniopygia guttata chr. 1 CMO000515 118,548,696
8 Zea mays chr. 1 CMO000777 301,354,135
9 Acaryochloris marina MBIC11017 CP000828 6,503,724
10 Bacillus megaterium DSM319 CP001982 87,884
11 Achromobacter xylosoxidans A8 CP002287 116,819
12 Actinoplanes sp. SE50/110 CP003170 9,239,851
13 Arabidopsis thaliana chr. 1 NC_003070.9 30,427,671
14 Human herpesvirus 4 type 1 NC_007605 171,823
15 Populus trichocarpa linkage group I ~ NC_008467.1 35,571,569
16 Danio rerio Zv9.73 chr. 1 GCA_000002035.2 60,348,388
17 Gorilla gorilla gorGor3.1.73 chr. 1 GCA_000151905.1 229,507,203

TABLE 1II: Values of Rf,DJ, D, of 17 genomes at read
lengths 100, 200, and 400.

oD D, DIOO D200 D400 RlOO R200 R400

1 0.999997419 0. 9879 0. 9941 0. 9972 0. 0190 0. 0099 0. 0048
2 0.999997125  0.9912  0.9953  0.9969  0.0131  0.0079  0.0058
3 0.999998745  0.9928  0.9971 0.9992  0.0118  0.0053  0.0015
4 0.999999211 09749  0.9863 09889  0.0413  0.0264  0.0221
5 0.999999785  0.9844  0.9943  0.9984  0.0220  0.0086  0.0024
6 0.999999833  0.9972  0.9990  0.9996  0.0040  0.0015  0.0006
7 0.999999720  0.9884  0.9964  0.9996  0.0221 0.0070  0.0009
8 0.999999563  0.8628  0.9505  0.9827  0.1898  0.0774  0.0300
9 0.999992484  0.9775 09808  0.9857  0.0318  0.0273  0.0204
10 0999993153  0.9921  0.9930  0.9944  0.0093  0.0083  0.0070
11 0999995814  0.9981  0.9982  0.9984  0.0035  0.0032  0.0029
12 0.999996839  0.9962  0.9972  0.9981 0.0064  0.0046  0.0031
13 0.999993844 09816  0.9859 09885  0.0306  0.0245  0.0207
14 0985835683  0.8500  0.8550  0.8620  0.1762  0.1691  0.1608
15 0999998489  0.9813 09873  0.9922  0.0361  0.0249  0.0154
16 0999997842  0.9663  0.9805  0.9877  0.0534  0.0318  0.0207
17 0.999999614  0.9841 09888 0.9915 0.0268  0.0196  0.0147

B. Rf, D¥,

To avoid biases toward a specific algorithmic approach,
we selected state-of-the-art research/commercial short-read
alignment software packages that employ different algorithmic
techniques and data structures including hash tables with
gapped or contiguous seeds (SHRiMP2 [17], mrFAST [18],

SeqAlto [19]), hash tables with seed-extension heuristics

and D correlate highly with alignment quality

TABLE III: Correlation coefficients of R’g“, D’g“, D, and preci-
sion/recall at read lengths 100, 200, and 400.

[ [ Precision [ Recall |
E =100 RlOD D;oo D, RIOO DlOO D,
Bowtie2 -0. 9829 0.9654 0.5177 -0. 9832 0. 9659 0.5211
Bwasw -0.9915 0.9796 0.5686 -0.9864 0.9712 0.5434
Seqalto -0.9962 0.9899 0.6124 -0.9964 0.9908 0.6201
Cushaw?2 -0.9958 0.9878 0.6016 -0.9958 0.9878 0.6017
Shrimp -0.9964 0.9898 0.6105 -0.9953 0.9879 0.6079
mrFAST -0.9960 0.9890 0.6073 -0.9950 0.9915 0.6274
Masai -0.9962 0.9889 0.6064 -0.9963 0.9893 0.6103
Smalt -0.9960 0.9894 0.6106 -0.9963 0.7771 0.1306
Gassst -0.9480 0.9143 0.3783 -0.8379 0.7921 0.3193
Soap2 -0.9939 0.9833 0.5785 -0.9883 0.9860  0.6516
Novoalign -0.6585 0.5899 -0.1139 -0.9877 0.9680 0.5349
Srmapper -0.6942 0.6200 -0.0238 -0.9662 0.9525 0.5578
% =200 R200 D200 D, Rzoo D200 D,
Bowtie2 -0. 9794 0. 9554 0.8128 -0. 9794 0. 9538 0.8105
Bwasw 0.9895 0.9895 0.8939 -0.9963 0.9894 0.8934
Seqalto -0.9961 0.9909 0.8993 -0.9959 0.9901 0.8974
Cushaw?2 -0.9963 0.9910 0.8983 -0.9962 0.9908 0.8982
Shrimp -0.9969 0.9927 0.9038 -0.9819  0.9603 0.8212
mrFAST -0.9959 0.9918 0.9029 -0.9897 0.9858 0.8989
Masai -0.9961 0.9917 0.9029 -0.9674 0.9706 0.9075
Smalt -0.9962 0.9924 0.9042 -0.9674 0.7254 0.6234
Gassst -0.8880 0.8329 0.6152 -0.3156 0.2760 0.1934
Soap2 -0.9940 0.9857 0.8826 -0.8969  0.9211 0.8977
Novoalign -0.2221 0.1306 -0.1401 -0.9843 0.9611 0.8312
Srmapper -0.2504 0.1467 -0.1075 -0.9402 09116 0.7764
% — 400 R400 D400 D, R400 D400 D,
Bowtie2 -0. 9900 0. 9818 0.9455 -0. 9889 0. 9804 0.9436
Bwasw -0.9955 0.9946 0.9720 -0.9959 0.9951 0.9726
Seqalto -0.9962 0.9951 0.9722 -0.9958 0.9946 0.9715
Cushaw?2 -0.9958 0.9949 0.9723 -0.9957 0.9949 0.9722
Shrimp -0.9963 0.9954 0.9725 -0.9944  0.9934  0.9708
mrFAST -0.9962 0.9948 0.9712 -0.9912 0.9926 0.9726
Masai -0.9898 0.9883 0.9621 -0.7671 0.7830 0.8048
Smalt -0.9898 0.9936 0.9685 -0.7671 0.7830 0.8858
Gassst -0.8827 0.8523 0.7785 -0.2869 0.2602 0.2378
Soap2 -0.9635 0.9493 0.8961 -0.2996 0.3013 0.9715
Novoalign 0.0329 -0.0580 -0.1030 -0.9871 0.9754 0.9362
Srmapper -0.0291 -0.0430 -0.1583 -0.9269 0.9048 0.8529

(GASSST [20], SRMapper [21], Novoalign* and Smalt'), FM-
indexing (Bowtie2 [22], BWA-SW [23], SOAP2 [24]), and
FM-indexing combined with comprehensive seed-extension
heuristics (CUSHAW?2 [25], Masai [26]).

Table III shows the Pearson correlation coefficients for

precision and recall on the aligners at read length k£ and
R, DE, and Dy, for k equal to 100, 200, and 400, respectively.
Correlatlon coefficients have values between -1 and 1. Values
closer to 0 mean no correlation; values closer to 1 (or -1)
mean the two quantities are highly correlated positively (or
negatively). These observations can be made:
First, by and large, R¥, D¥, and D, correlate very highly
with the performance (pre01s1on and/or recall) of all align-
ers; correlation coefficients are nearly 1 in most cases. Rk
correlates negatively, while Dk and D, correlate posmvely
with alignment performance. ThlS makes sense as higher Rk
values imply a higher ratio of repeats, whereas higher Dk or
D, values imply a higher ratio of distinct k-mers.

Second R’C and D’g are similarly correlated (in magnitude)
to performance although Rk is a little bit more correlated
in both precision and recall. We may conclude that given a

*Novocraft Technologies, www.novocraft.com
TWellcome Sanger Institute, https://www.sanger.ac.uk/tool/smalt-0/
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specific read length, R’g is the best measure of complexity.

Third, since D, is by definition free of any specific lengths
of substrings, it cannot take advantage of specific read lengths
as the other two measures do. Consequently, D, does not cor-
relates as highly as the other two measures do. Nevertheless,
the longer the reads become, the more D, correlates with both
precision and recall. In many cases at k = 400, D, correlation
with coefficients is nearly 1. This means, if we are not given
specific information about read lengths a priori, D, can still
be a good measure of complexity.

Fourth, R’g“, D’;, and D, correlate well will most aligners
in both precision and recall. At longer read lengths, the
correlation is very high for only recall but not precision for two
aligners (Novoalign and SRmaper). Interestingly, for GASSST,
the reverse is true: correlation is high for precision, but not
recall. We suspect that these aligners adopt algorithmic and
heuristic strategies that yield consistent performance on either
precision or recall, but not both.

In summary, across 12 state-of-the-art research and com-
mercial short-read aligners that employ a diverse sets of
strategies and data structures, performance is correlated very
significantly to R’g“7 D’g“, and D,.

C. Analyzing aligners’ performance

Although we expect that repeats and distinct substrings are
closely related to alignment quality, the ability to quantify this
relationship enables interesting genome analysis and perfor-
mance prediction. For performance prediction, the correlations
enable us to construct linear models of performance for each
aligner (coefficients summarized in Table III). For example,
the linear model for SeqAlto [19] is shown in Figure 1.
Suppose hypothetically that we would like to know how well
SeqAlto performs on an unknown genome, ¢’, for reads of
length 100. And further suppose that R_}]?O is 0.1. Then,
the linear model for SeqAlto predicts that precision would
be —0.8609 - (0.1) + 1.0012 ~ 0.92 and recall would be
—0.9211 - (0.1) + 0.9959 ~ 0.90. As R%° for SeqAlto is
highly correlated to its performance (0.9962 for precision and
0.9964 for recall), we expect that this prediction is accurate.

D. Choosing the best aligners for specific genomes

As different aligners have different trade-offs and charac-
teristics, it is often difficult to choose the best aligners for
a specific need. Here, we are interested in finding the best
aligners for specific genomes of interest. Given a list of highly
correlated linear models of aligners, we can compute the
complexity (e.g. ng“) of an unknown genome and use it to
select the best aligners for that specific genome. Indeed, the
linear models constitute a concave-shaped optimal front that
divides the complexity space into intervals, each of which
associates with an optimal aligner. Technically, the optimal
front consists of an ordered list of models [f1,---, f,,] and a
list of numbers in increasing order: [py, - -, pm—1]- The best
aligner for a genome with complexity c is fi if ¢ < py, fp, if
¢ > pm-1,and f; if p;_1 <c < p;.

As an example, Figure 2 shows the linear models (of
recall), computed from our experiment, for mrFAST, GASSST,
Novoalign: y; = —0.86962+0.944, yo = —0.91872+0.9716,
and y3 = —1.1055z + 0.995. The optimal front can be
computed as [ys,y2,y1] and [0.13,0.56]. For genomes whose
repeat density (R’g“) values are less than 0.13, Novoalign is the
best. For values between 0.13 and 0.56, GASSST is the best.
And for values larger than 0.56, mrFAST is the best.

The optimal front for the set of linear equations H =
{h1,- -+, hy} can be found by first selecting the equation with
the highest performance at 0, iteratively intersecting the last
selected equation with the remaining ones, and then choosing
the one with highest performance at the intersection points.
Formally,

I: Find h* € H such that 7*(0) > h(0),Vh € H

2: Let F' be the queue [h*]; P be an empty queue

3 H— H-h*

4: while H is not empty do

5: Let I = {(x1,h1(x1)),---, (x|a), hya|(2m)))} be the
intersection points of the last equation in F' with equa-
tions in H

6: Find (z*,h*(z*)) € I such that h*(z*) >
h(wi),V(x;, hj(x;)) € 1.

7. F.enqueue(h*); P.enqueue(z™)

88 H<+ H—-h*

9: return (F,P)

IV. CONCLUSION

We investigated different measures of genome sequence
complexity. These measures can be computed efficiently and
were shown to strongly correlate to the difficulty of aligning
short reads to reference genomes. This correlation enables us
to build linear models of alignment performance to analyze
performance characteristics of different algorithms. These lin-
ear models enable us to select the best aligners for specific
genomes based on their complexity. These results should be
useful for the study of genome sequence complexity as well
as for the study of short-read alignment and assembly.

The ability to predict accuracy of short-read aligners without
aligning reads has two benefits. First, it will save time and
serve as an additional useful criterion to compare differ-
ent alignment algorithms and to select the most accurate
aligners for unknown genomes. Second, we can use linear
regression models of aligners to build an optimal front, as
shown conceptually in Figure 2 and select the most accurate
aligners for a new genome based on its complexity value.
Computing sequence complexity for genomes is much less
computationally expensive than aligning millions of reads of
different lengths and mutation rates to genomes.
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