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Vast repositories of heterogeneous data from existing sources present unique opportunities. Taken 
individually, each of the datasets offers solutions to important domain and source-specific questions. 
Collectively, they represent complementary views of related data entities with an aggregate 
information value often well exceeding the sum of its parts. Integration of heterogeneous data is 
therefore paramount to i) obtain a more unified picture and comprehensive view of the relations, ii) 
achieve more robust results, iii) improve the accuracy and integrity, and iv) illuminate the complex 
interactions among data features. In this paper, we have proposed a data integration methodology to 
identify subtypes of cancer using multiple data types (mRNA, methylation, microRNA and somatic 
variants) and different data scales that come from different platforms (microarray, sequencing, etc.).
The Cancer Genome Atlas (TCGA) dataset is used to build the data integration and cancer subtyping 
framework. The proposed data integration and disease subtyping approach accurately identifies novel 
subgroups of patients with significantly different survival profiles. With current availability of vast 
genomics, and variant data for cancer, the proposed data integration system will better differentiate 
cancer and patient subtypes for risk and outcome prediction and targeted treatment planning without 
additional cost and precious lost time.

Keywords: data integration, disease subtype discovery, omics data

1. Introduction 

Genomic and epidemiologic studies over the past decade have generated a wealth of data, including 
molecular, variant, and clinical data on both individuals and populations that can be leveraged to 
better understand cancer risk, progression, and outcomes. Subtyping patient disease populations 
using high-dimensional molecular data has transformed how researchers and clinicians interpret and 
quantify heterogeneity within a disease. Subtyping has been highly effective in discovering cancer 
types, tumor histologies, survival rates, treatment planning and responses. Investigation of clinically 
relevant disease subtypes cannot be achieved by using a single dataset in isolation from others due 
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to the heterogeneity of cancer with multifactorial etiology. Hence, careful integration of diverse data 
is crucial (e.g. molecular, clinical, environmental data) [1].

The heterogeneity of diseases such as breast cancer is well recognized and gene expression 
profiling has been used to identify at least four major subtypes: luminal A, luminal B, HER2+ and 
basal-like [2]. In the past decade, important clinical advances in cancer treatments are attributed to 
molecularly targeted treatments aiming at specific genes such as estrogen receptor alpha (ER-α), the 
human epidermal growth factor receptor 2 (HER2), the epidermal growth factor receptor (EGFR), 
etc [3]. Targeted treatments result in greater efficacy and fewer debilitating or dose limiting side 
effects. This clearly proves that it is important to identify and appropriately treat each individual 
disease subtype. However, our current understanding of disease subtypes appears to be very limited. 
Despite targeted treatment advances, targeted therapies often fail for some patients. For breast 
cancer, while 20% of tumors overexpress the HER2 oncogene, one-third of these fail to show 
response to HER2-targeted therapies right from the outset. Research and clinical studies present a 
similar story for anti-estrogen treatment of ER-α-positive breast cancer, and androgen ablation of 
androgen receptor positive prostate cancer [4]. Not all patients show an initial response, and from 
those who do, a significant number will develop resistance. The fact that a substantial fraction of 
patients with a given subtype of cancer respond very differently to the same treatment, either 
immediately or later on, means that either: i) the known subtypes are not truly homogeneous and 
must be further refined, or ii) that subgroups of patients may have different mechanisms of 
defense against the same tumor type.

Several studies have been undertaken to determine disease subtypes. Agglomerative 
hierarchical clustering (HC) [5, 6], model-based approaches [7, 8], graph theoretical methods [9, 
10], matrix factorization [11] and neural networks [12, 13] are widely used techniques to identify 
the heterogeneity within a disease. Subtypes of cancer can be identified using different data types 
such as clinical data, DNA sequencing, miRNA sequencing, protein expression, mRNA sequencing, 
DNA Methylation, somatic variants [14, 15, 20, 24, 31]. 

Consensus Clustering (CC) [16] is a state-of-the-art approach desired to find a single 
clustering by reconciling clustering information from various sources or from different runs of the 
same algorithm. However, CC cannot be used to combine multiple data types with different scales 
and most of the time the analysis of each data type leads to different results (subgroups) that are 
hard to interpret. Other machine learning approaches such as iCluster [17], and iClusterPlus [18] 
addresses the challenge of integration by using statistical models that can simultaneously perform 
clustering, data integration, feature selection and dimensionality reduction using a probabilistic 
matrix factorization approach. Though powerful, they are limited by their strong assumptions about 
the data as well as by the gene selection step necessary to reduce computational complexity. 
Similarity Network Fusion (SNF) [19] is another state-of-the-art approach that can be used for 
cancer subtyping by integrating multiple data types. Herein, samples are constructed into separate 
networks for each data type and fused into one network that represents the full spectrum of the data. 
However, the unstable nature of kernel-based clustering makes the algorithm sensitive to small 
changes in molecular measurements or in its parameter settings. Cancer Integration via Multikernel 
Learning (CIMLR) is another kernel-based approach that adds weights to different data types [30].
MaxSilhoutte is a clustering technique based on cluster tightness and separation where each cluster 
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is represented by a so-called silhouette [27]. MaxSilhoutte, however, is not designed to integrate 
multiple data types, and hence requires the separate datasets to be concatenated for integrative 
analysis.

Nguyen et. al.’s recent paper [20] has inspired and given us the basis on which we have built 
a data integration and disease-subtyping framework. They have proposed a novel integrative 
approach, called Perturbation clustering for data INtegration and disease Subtyping (PINS) that 
addresses subtype discovery using a single datatype or integration of multiple data types. The 
method determines the optimal number of clusters and then partitions the samples in a way such 
that the results are robust to noise and data perturbation. The study integrated multiple quantitative 
numerical data types (mRNA, methylation, microRNA) that came from different platforms, 
different scales and different cellular phenomena. Though powerful, the approach proposed here 
can only be applied on quantitative numerical data types. In this paper, we have proposed a new 
method that can integrate both qualitative and quantitative numerical data to better identify the 
cancer subtypes and novel subgroups of patients with significantly different survival profiles. 

Cancer being a heterogeneous disease with large genetic diversity even between tumors of
the same cancer types, it is common for the patients to have significant differences between their 
molecular profiles. Hence, majority of the recent studies use integrative approaches that combines 
multiple types of molecular data such as Methylation, mRNA expression, DNA copy number 
variation etc. accounting for variations among individuals and thereby achieving more accurate 
subtyping  [21, 28, 29]. However, because of the noise level of these datasets and the complexity of 
the disease, the results are not producing significant separation between the subgroups [22]. 
Therefore, recent studies have proposed to use additional datasets such as somatic variants [21, 23], 
and clinical data [30] in combination with the aforementioned molecular data types as a new source 
of information. Gligorijevic et. al. has shown that careful integration of different data types can 
address several challenges as i) stratification of patients with different clinical outcomes, ii) 
prediction of driver genes, iii) repurposing of drugs treating particular cancer patient groups [21].

In a previous study, we have proposed a cancer subtyping methodology using solely somatic 
variant data available at TCGA [24]. We were not interested in any clusters that form or disappear 
due to small changes in the data, but rather for those groupings that remain stable across many 
clusterings built in the presence of small changes. To identify such clusters, we have generated new 
datasets by perturbing the original data using a Post Randomization (PRAM) method and 
reconstructing the clustering. The discrepancy between the original and the perturbed data was used 
to assess the stability of the clusters. The results have shown that the proposed approach can identify 
disease subtypes better than the state-of-the-art approaches.  

In this paper, we integrated the subtyping approach we proposed in [24] for somatic variants 
with the subtyping approach defined by two of our authors [20] for mRNA, miRNA and 
Methylation. We developed a data integration system for cancer subtyping that flexibly integrates 
both qualitative and quantitative datatypes using existing datasets available at TCGA. We believe 
that integrating multi-variate heterogeneous datatypes will improve the consistency and actionable 
information value of the consensus subtypes.  Developed framework will be a valuable precision 
medicine resource for the wider scientific community on other diseases to pursue a multitude of 
studies that have not been possible due to limitations of existing integrative subtyping methods.   
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to the heterogeneity of cancer with multifactorial etiology. Hence, careful integration of diverse data 
is crucial (e.g. molecular, clinical, environmental data) [1].

The heterogeneity of diseases such as breast cancer is well recognized and gene expression 
profiling has been used to identify at least four major subtypes: luminal A, luminal B, HER2+ and 
basal-like [2]. In the past decade, important clinical advances in cancer treatments are attributed to 
molecularly targeted treatments aiming at specific genes such as estrogen receptor alpha (ER-α), the 
human epidermal growth factor receptor 2 (HER2), the epidermal growth factor receptor (EGFR), 
etc [3]. Targeted treatments result in greater efficacy and fewer debilitating or dose limiting side 
effects. This clearly proves that it is important to identify and appropriately treat each individual 
disease subtype. However, our current understanding of disease subtypes appears to be very limited. 
Despite targeted treatment advances, targeted therapies often fail for some patients. For breast 
cancer, while 20% of tumors overexpress the HER2 oncogene, one-third of these fail to show 
response to HER2-targeted therapies right from the outset. Research and clinical studies present a 
similar story for anti-estrogen treatment of ER-α-positive breast cancer, and androgen ablation of 
androgen receptor positive prostate cancer [4]. Not all patients show an initial response, and from 
those who do, a significant number will develop resistance. The fact that a substantial fraction of 
patients with a given subtype of cancer respond very differently to the same treatment, either 
immediately or later on, means that either: i) the known subtypes are not truly homogeneous and 
must be further refined, or ii) that subgroups of patients may have different mechanisms of 
defense against the same tumor type.

Several studies have been undertaken to determine disease subtypes. Agglomerative 
hierarchical clustering (HC) [5, 6], model-based approaches [7, 8], graph theoretical methods [9, 
10], matrix factorization [11] and neural networks [12, 13] are widely used techniques to identify 
the heterogeneity within a disease. Subtypes of cancer can be identified using different data types 
such as clinical data, DNA sequencing, miRNA sequencing, protein expression, mRNA sequencing, 
DNA Methylation, somatic variants [14, 15, 20, 24, 31]. 

Consensus Clustering (CC) [16] is a state-of-the-art approach desired to find a single 
clustering by reconciling clustering information from various sources or from different runs of the 
same algorithm. However, CC cannot be used to combine multiple data types with different scales 
and most of the time the analysis of each data type leads to different results (subgroups) that are 
hard to interpret. Other machine learning approaches such as iCluster [17], and iClusterPlus [18] 
addresses the challenge of integration by using statistical models that can simultaneously perform 
clustering, data integration, feature selection and dimensionality reduction using a probabilistic 
matrix factorization approach. Though powerful, they are limited by their strong assumptions about 
the data as well as by the gene selection step necessary to reduce computational complexity. 
Similarity Network Fusion (SNF) [19] is another state-of-the-art approach that can be used for 
cancer subtyping by integrating multiple data types. Herein, samples are constructed into separate 
networks for each data type and fused into one network that represents the full spectrum of the data. 
However, the unstable nature of kernel-based clustering makes the algorithm sensitive to small 
changes in molecular measurements or in its parameter settings. Cancer Integration via Multikernel 
Learning (CIMLR) is another kernel-based approach that adds weights to different data types [30].
MaxSilhoutte is a clustering technique based on cluster tightness and separation where each cluster 
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is represented by a so-called silhouette [27]. MaxSilhoutte, however, is not designed to integrate 
multiple data types, and hence requires the separate datasets to be concatenated for integrative 
analysis.

Nguyen et. al.’s recent paper [20] has inspired and given us the basis on which we have built 
a data integration and disease-subtyping framework. They have proposed a novel integrative 
approach, called Perturbation clustering for data INtegration and disease Subtyping (PINS) that 
addresses subtype discovery using a single datatype or integration of multiple data types. The 
method determines the optimal number of clusters and then partitions the samples in a way such 
that the results are robust to noise and data perturbation. The study integrated multiple quantitative 
numerical data types (mRNA, methylation, microRNA) that came from different platforms, 
different scales and different cellular phenomena. Though powerful, the approach proposed here 
can only be applied on quantitative numerical data types. In this paper, we have proposed a new 
method that can integrate both qualitative and quantitative numerical data to better identify the 
cancer subtypes and novel subgroups of patients with significantly different survival profiles. 

Cancer being a heterogeneous disease with large genetic diversity even between tumors of
the same cancer types, it is common for the patients to have significant differences between their 
molecular profiles. Hence, majority of the recent studies use integrative approaches that combines 
multiple types of molecular data such as Methylation, mRNA expression, DNA copy number 
variation etc. accounting for variations among individuals and thereby achieving more accurate 
subtyping  [21, 28, 29]. However, because of the noise level of these datasets and the complexity of 
the disease, the results are not producing significant separation between the subgroups [22]. 
Therefore, recent studies have proposed to use additional datasets such as somatic variants [21, 23], 
and clinical data [30] in combination with the aforementioned molecular data types as a new source 
of information. Gligorijevic et. al. has shown that careful integration of different data types can 
address several challenges as i) stratification of patients with different clinical outcomes, ii) 
prediction of driver genes, iii) repurposing of drugs treating particular cancer patient groups [21].

In a previous study, we have proposed a cancer subtyping methodology using solely somatic 
variant data available at TCGA [24]. We were not interested in any clusters that form or disappear 
due to small changes in the data, but rather for those groupings that remain stable across many 
clusterings built in the presence of small changes. To identify such clusters, we have generated new 
datasets by perturbing the original data using a Post Randomization (PRAM) method and 
reconstructing the clustering. The discrepancy between the original and the perturbed data was used 
to assess the stability of the clusters. The results have shown that the proposed approach can identify 
disease subtypes better than the state-of-the-art approaches.  

In this paper, we integrated the subtyping approach we proposed in [24] for somatic variants 
with the subtyping approach defined by two of our authors [20] for mRNA, miRNA and 
Methylation. We developed a data integration system for cancer subtyping that flexibly integrates 
both qualitative and quantitative datatypes using existing datasets available at TCGA. We believe 
that integrating multi-variate heterogeneous datatypes will improve the consistency and actionable 
information value of the consensus subtypes.  Developed framework will be a valuable precision 
medicine resource for the wider scientific community on other diseases to pursue a multitude of 
studies that have not been possible due to limitations of existing integrative subtyping methods.   

Pacific Symposium on Biocomputing 2020

553

b3805_Chapters-new.indd   553 14-11-2019   1:52:11 PM

 B
io

co
m

pu
tin

g 
20

20
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 "

U
N

IV
E

R
SI

T
Y

 O
F 

N
E

V
A

D
A

, R
E

N
O

" 
on

 0
1/

01
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



b3805  Pacific Symposium on Biocomputing 2020 8.5"x11"

Pacific Symposium on Biocomputing 2020

554

2. Methods 

We analyzed five different cancers available at The Cancer Genome Atlas (TCGA) website 
(https://tcga-data.nci.nih.gov/): Kidney Renal Clear Cell Carcinoma (KIRC), glioblastoma 
multiforme (GBM), acute myeloid leukemia (LAML), breast invasive carcinoma (BRCA), and 
colon adenocarcinoma (COAD). Table 1 shows the basic descriptions of the five datasets we have 
analyzed. We used mRNA expression, DNA Methylation, miRNA expression and somatic variant 
data to identify the subtypes for each of the five cancers. Subtyping is first performed on each data 
in isolation and the obtained results are then integrated to improve the differentiation between 
subgroups.

Table 1. Description of the five datasets from The Cancer Genome Atlas (TCGA)

Data Set Patients Data Type Components no.
KIRC 124 mRNA

Methylation
miRNA
Somatic Variant

17,974
23,265
590
3412

GBM 273 mRNA
Methylation
miRNA
Somatic Variant

12,042
22,833
534
5172

LAML 158 mRNA
Methylation
miRNA
Somatic Variant

16,818
22,833
552
1259

BRCA 172 mRNA
Methylation
miRNA
Somatic Variant

20,100
22,533
718
8805

COAD 145 mRNA
Methylation
miRNA
Somatic Variant

17,062
24,454
710
13,309

2.1. Subtyping Qualitative Data

Herein, we have used the somatic variant data to identify the cancer subtypes. The somatic variant 
data is stored in a binary matrix, where “1” denotes a mutation on the host gene, and “0” denotes 
the absence of mutation, with the rows and columns corresponding to the samples and genes, 
respectively. Somatic variants can be defined as an alteration in DNA identified by comparing a 
normal sample with a tumor sample and generally very sparse since the proportion of variants  are 
minor compared to the whole genome size.
For each of the five datasets, we calculated the pairwise distance between all patients using the 
Jaccard index. For each patient, the somatic variant profile is represented as a binary vector and the
Jaccard index is computed as (1)

represents the total number of  mutated genes for patients and , represents the total 
number of genes where patient has a value of ‘0’ and has a value of ‘1’, and represents the 
total number of genes where patient has a value of ‘1’ and has a value of ‘0’. The Jaccard index 
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is computed for each pair of patient in the dataset, resulting in a similarity matrix that can be used 
as an input to any distance based clustering method. To identify the subtypes, we exploit the 
agglomerative hierarchical clustering using the Ward’s method as the linkage criteria as well as the 
Partition Around Medoids (PAM) clustering. The identified subtypes can be illustrated in a matrix 
form referred to as the connectivity matrix.

2.1.1 Construction of Data Connectivity

The input is a dataset, where is the number of subjects and is the number of features 
for each subject. For somatic variants, the pairwise similarity between each pair of subject is 
computed using the Jaccard similarity measure and stored in a matrix form. We then partition the 
subjects into clusters for each value of using a clustering algorithm. We have used the 
Agglomerative Hierarchical Clustering and PAM but a number of other classical distance based 
clustering approaches could be used instead. The input dataset can be presented as a set of 
vectors , where each vector represents the features of the subject.  A 
partition represents a set of subjects that are members of the same cluster. We 
generate a pairwise connectivity matrix , which can be defined as follows: 

(2)

Here, the connectivity between two subjects is ‘1’ if and only if they belong to the same cluster and 
‘0’ otherwise. 

2.1.2. Generating Perturbed Datasets

One  challenge of clustering is  the  determination  of  the  number  of  clusters,  i.e. the number  of 
subtypes. The proposed approach hypothesizes that the number clusters should be robust with 
respect to the systemic noise of the features within the population. Hence, we have utilized a 
perturbation mechanism to add noise to the input data many times and construct connectivity 
matrices for each perturbed dataset. The original and the average perturbed connectivity matrices 
are then compared to assess the stability of pair-wise connectivity (identical or different cluster 
membership) for each pair of subjects. Number of clusters, providing the highest degree  of  stability  
with  a  certain amount  of  perturbation, is considered to  be  optimal. 
Accordingly, we first developed a perturbation method for discrete and binomial data by employing 
a post-randomization (PRAM) methodology [25]. PRAM is a perturbative method for disclosure 
protection of qualitative variables [25]. Applying PRAM on a dataset leads the values of a number 
of variables to be changed according to a specified probability mechanism. PRAM is commonly 
used to protect sensitive data files against disclosure by randomization of individual record data 
with the proper choice of transition probabilities. 
As a first step in perturbing data, let denote a qualitative variable in the original dataset with 
categories, numbered to which PRAM is applied and denote the same categorical variable 
in the perturbed data file. Let be a Markov probability matrix defined as; 

, that denotes the probability of  the original value transitioned into a value 
of . For a dataset of records, let denote the value of for the th record in the data file. 
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2. Methods 

We analyzed five different cancers available at The Cancer Genome Atlas (TCGA) website 
(https://tcga-data.nci.nih.gov/): Kidney Renal Clear Cell Carcinoma (KIRC), glioblastoma 
multiforme (GBM), acute myeloid leukemia (LAML), breast invasive carcinoma (BRCA), and 
colon adenocarcinoma (COAD). Table 1 shows the basic descriptions of the five datasets we have 
analyzed. We used mRNA expression, DNA Methylation, miRNA expression and somatic variant 
data to identify the subtypes for each of the five cancers. Subtyping is first performed on each data 
in isolation and the obtained results are then integrated to improve the differentiation between 
subgroups.

Table 1. Description of the five datasets from The Cancer Genome Atlas (TCGA)

Data Set Patients Data Type Components no.
KIRC 124 mRNA

Methylation
miRNA
Somatic Variant

17,974
23,265
590
3412

GBM 273 mRNA
Methylation
miRNA
Somatic Variant

12,042
22,833
534
5172

LAML 158 mRNA
Methylation
miRNA
Somatic Variant

16,818
22,833
552
1259

BRCA 172 mRNA
Methylation
miRNA
Somatic Variant

20,100
22,533
718
8805

COAD 145 mRNA
Methylation
miRNA
Somatic Variant

17,062
24,454
710
13,309

2.1. Subtyping Qualitative Data

Herein, we have used the somatic variant data to identify the cancer subtypes. The somatic variant 
data is stored in a binary matrix, where “1” denotes a mutation on the host gene, and “0” denotes 
the absence of mutation, with the rows and columns corresponding to the samples and genes, 
respectively. Somatic variants can be defined as an alteration in DNA identified by comparing a 
normal sample with a tumor sample and generally very sparse since the proportion of variants  are 
minor compared to the whole genome size.
For each of the five datasets, we calculated the pairwise distance between all patients using the 
Jaccard index. For each patient, the somatic variant profile is represented as a binary vector and the
Jaccard index is computed as (1)

represents the total number of  mutated genes for patients and , represents the total 
number of genes where patient has a value of ‘0’ and has a value of ‘1’, and represents the 
total number of genes where patient has a value of ‘1’ and has a value of ‘0’. The Jaccard index 
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is computed for each pair of patient in the dataset, resulting in a similarity matrix that can be used 
as an input to any distance based clustering method. To identify the subtypes, we exploit the 
agglomerative hierarchical clustering using the Ward’s method as the linkage criteria as well as the 
Partition Around Medoids (PAM) clustering. The identified subtypes can be illustrated in a matrix 
form referred to as the connectivity matrix.

2.1.1 Construction of Data Connectivity

The input is a dataset, where is the number of subjects and is the number of features 
for each subject. For somatic variants, the pairwise similarity between each pair of subject is 
computed using the Jaccard similarity measure and stored in a matrix form. We then partition the 
subjects into clusters for each value of using a clustering algorithm. We have used the 
Agglomerative Hierarchical Clustering and PAM but a number of other classical distance based 
clustering approaches could be used instead. The input dataset can be presented as a set of 
vectors , where each vector represents the features of the subject.  A 
partition represents a set of subjects that are members of the same cluster. We 
generate a pairwise connectivity matrix , which can be defined as follows: 

(2)

Here, the connectivity between two subjects is ‘1’ if and only if they belong to the same cluster and 
‘0’ otherwise. 

2.1.2. Generating Perturbed Datasets

One  challenge of clustering is  the  determination  of  the  number  of  clusters,  i.e. the number  of 
subtypes. The proposed approach hypothesizes that the number clusters should be robust with 
respect to the systemic noise of the features within the population. Hence, we have utilized a 
perturbation mechanism to add noise to the input data many times and construct connectivity 
matrices for each perturbed dataset. The original and the average perturbed connectivity matrices 
are then compared to assess the stability of pair-wise connectivity (identical or different cluster 
membership) for each pair of subjects. Number of clusters, providing the highest degree  of  stability  
with  a  certain amount  of  perturbation, is considered to  be  optimal. 
Accordingly, we first developed a perturbation method for discrete and binomial data by employing 
a post-randomization (PRAM) methodology [25]. PRAM is a perturbative method for disclosure 
protection of qualitative variables [25]. Applying PRAM on a dataset leads the values of a number 
of variables to be changed according to a specified probability mechanism. PRAM is commonly 
used to protect sensitive data files against disclosure by randomization of individual record data 
with the proper choice of transition probabilities. 
As a first step in perturbing data, let denote a qualitative variable in the original dataset with 
categories, numbered to which PRAM is applied and denote the same categorical variable 
in the perturbed data file. Let be a Markov probability matrix defined as; 

, that denotes the probability of  the original value transitioned into a value 
of . For a dataset of records, let denote the value of for the th record in the data file. 
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Given that , applying PRAM means that the value of is drawn from the probability 
distribution This procedure can then be applied independently on each record in the 
datafile. Consider an example where the variable represents the somatic variants with “1” denoting 
a mutation on the host gene, and “0” denoting the absence mutation (hence, the number of 
categories, . The Markov probability matrix can then be defined as follows:  

(3)

In this paper, we have randomized the variants for each subject using equal probabilities for the 
transitions. A variant will switch from present to absent and vice versa, with the probability of ,
and stay as is with a probability . If the transition probabilities are set too low, the added noise 
will not perturb the data sufficiently. If the probabilities are too high, the perturbation may 
significantly change the patterns of the data, causing the subtypes to be indifferentiable due to the 
added noise. Therefore, the selection of the transition probabilities has an important effect on 
identifying the hidden subtypes of the data. To determine the transition probabilities, we considered 
the mutation in each gene as an independent Bernoulli trial. The Bernoulli process applies to discrete 
stochastic sequences and each component ( designates whether a mutation happened at a 
specific position. This way, we can use the variance of each Bernoulli trial to determine the 
transition probabilities of PRAM. 

, where . (4)
In equation 4, the variance, , would correspond to , e.g. if the median variance of a dataset 
is calculated as 0.02, then the transition probability, is set to 0.98, which means that there would
be a 98% probability for any somatic variant (0,1) at to remain the same. This process allows 
us to construct numerous perturbed versions of the original data. 

2.1.3.Construction of Perturbed Connectivity

To construct the connectivity matrices for each perturbed data, we clustered each perturbed dataset 
using both hierarchical clustering and PAM with varying values of . Since true cluster 
assignments is assumed to be robust with respect to small perturbations, the ideal case would be the 
individual patient’s cluster assignments to remain the same on both original and perturbed datasets 
for the optimal cluster size, . Since we have generated many perturbed versions of the original data 
(say perturbation datasets) for each cluster , the overall connectivity matrix, can be calculated 
by averaging the connectivity matrices of each perturbed dataset, where 

can be defined as follows: 

(5)

(6)
Hence, the discrepancy between the original connectivity matrix and the average 
connectivity matrix of the perturbed data can be calculated to measure the stability of each 
cluster size The cluster associated with the minimal discrepancy is then identified as the optimal 
cluster size. 

Pacific Symposium on Biocomputing 2020

556

2.2. Subtyping Quantitative Data 

Herein, we have used mRNA expression, DNA methylation and microRNA data to identify the 
cancer subtypes. We have used the method introduced by Nguyen et. al. [20]. Each of these are 
quantitative numerical datatypes with different scales. Each datatype is first used in isolation to 
identify the subtypes and the results are then integrated to determine the consensus subtypes. The 
perturbation methodology used for quantitative data is different from the method used for qualitative
data. 

2.2.1. Construction of Data Connectivity

The input is a dataset, where is the number of subjects and is the number of features 
for each subject. We partition the subjects into clusters for each value of using the 
traditional k-means clustering. The connectivity matrices for the quantitative data are then 
constructed the same way as in qualitative data (See Section 2.1).

2.2.2. Generating Perturbed Datasets

For the quantitative data, the perturbation is performed by adding Gaussian noise to the original 
data. We perturb the data with a noise level that has a variance equal to the variance of the data in 
order to prevent the perturbation from significantly changing the patterns of the data and causing 
the subtypes to be indifferentiable due to the added noise. The variance is calculated as follows: 

, where . (7)
We then generate new datasets (e.g. 200), , by adding Gaussian noise 

to the original data. (8)
Each perturbed data is then re-clustered for each cluster size. The perturbed connectivity matrices 
for quantitative and qualitative data are constructed using the same approach as discussed in Section 
2.1.2.

2.3. Integration of Connectivity Matrices

Once the connectivity matrices for the optimal cluster size are generated for each datatype, we 
then integrate those matrices by the method described below. In the ideal case, different data types 
should give consistent connectivity between subjects. However, in practice, different data types can 
give contradictory information. Therefore, we need to rely on the average connectivity between data 
types in order to partition the samples. The average pairwise connectivity between samples can be 
calculated as follows: , where represents the different datatypes within the 
dataset. Hence, will be 0 if i and j are never clustered together , 1 if i and j are always 
clustered together, and between 0 and 1, if i and j are clustered together in some datatypes.

We refer to as the similarity matrix and as the distance matrix. The matrix of 
pairwise distances can be directly used by a similarity-based clustering algorithm such as 
agglomerative hierarchical clustering, PAM or dynamic tree cut to partition the dataset. The 
framework of the proposed data integration and disease subtyping methodology is illustrated in 
Figure 1.
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Given that , applying PRAM means that the value of is drawn from the probability 
distribution This procedure can then be applied independently on each record in the 
datafile. Consider an example where the variable represents the somatic variants with “1” denoting 
a mutation on the host gene, and “0” denoting the absence mutation (hence, the number of 
categories, . The Markov probability matrix can then be defined as follows:  

(3)

In this paper, we have randomized the variants for each subject using equal probabilities for the 
transitions. A variant will switch from present to absent and vice versa, with the probability of ,
and stay as is with a probability . If the transition probabilities are set too low, the added noise 
will not perturb the data sufficiently. If the probabilities are too high, the perturbation may 
significantly change the patterns of the data, causing the subtypes to be indifferentiable due to the 
added noise. Therefore, the selection of the transition probabilities has an important effect on 
identifying the hidden subtypes of the data. To determine the transition probabilities, we considered 
the mutation in each gene as an independent Bernoulli trial. The Bernoulli process applies to discrete 
stochastic sequences and each component ( designates whether a mutation happened at a 
specific position. This way, we can use the variance of each Bernoulli trial to determine the 
transition probabilities of PRAM. 

, where . (4)
In equation 4, the variance, , would correspond to , e.g. if the median variance of a dataset 
is calculated as 0.02, then the transition probability, is set to 0.98, which means that there would
be a 98% probability for any somatic variant (0,1) at to remain the same. This process allows 
us to construct numerous perturbed versions of the original data. 

2.1.3.Construction of Perturbed Connectivity

To construct the connectivity matrices for each perturbed data, we clustered each perturbed dataset 
using both hierarchical clustering and PAM with varying values of . Since true cluster 
assignments is assumed to be robust with respect to small perturbations, the ideal case would be the 
individual patient’s cluster assignments to remain the same on both original and perturbed datasets 
for the optimal cluster size, . Since we have generated many perturbed versions of the original data 
(say perturbation datasets) for each cluster , the overall connectivity matrix, can be calculated 
by averaging the connectivity matrices of each perturbed dataset, where 

can be defined as follows: 

(5)

(6)
Hence, the discrepancy between the original connectivity matrix and the average 
connectivity matrix of the perturbed data can be calculated to measure the stability of each 
cluster size The cluster associated with the minimal discrepancy is then identified as the optimal 
cluster size. 
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2.2. Subtyping Quantitative Data 

Herein, we have used mRNA expression, DNA methylation and microRNA data to identify the 
cancer subtypes. We have used the method introduced by Nguyen et. al. [20]. Each of these are 
quantitative numerical datatypes with different scales. Each datatype is first used in isolation to 
identify the subtypes and the results are then integrated to determine the consensus subtypes. The 
perturbation methodology used for quantitative data is different from the method used for qualitative
data. 

2.2.1. Construction of Data Connectivity

The input is a dataset, where is the number of subjects and is the number of features 
for each subject. We partition the subjects into clusters for each value of using the 
traditional k-means clustering. The connectivity matrices for the quantitative data are then 
constructed the same way as in qualitative data (See Section 2.1).

2.2.2. Generating Perturbed Datasets

For the quantitative data, the perturbation is performed by adding Gaussian noise to the original 
data. We perturb the data with a noise level that has a variance equal to the variance of the data in 
order to prevent the perturbation from significantly changing the patterns of the data and causing 
the subtypes to be indifferentiable due to the added noise. The variance is calculated as follows: 

, where . (7)
We then generate new datasets (e.g. 200), , by adding Gaussian noise 

to the original data. (8)
Each perturbed data is then re-clustered for each cluster size. The perturbed connectivity matrices 
for quantitative and qualitative data are constructed using the same approach as discussed in Section 
2.1.2.

2.3. Integration of Connectivity Matrices

Once the connectivity matrices for the optimal cluster size are generated for each datatype, we 
then integrate those matrices by the method described below. In the ideal case, different data types 
should give consistent connectivity between subjects. However, in practice, different data types can 
give contradictory information. Therefore, we need to rely on the average connectivity between data 
types in order to partition the samples. The average pairwise connectivity between samples can be 
calculated as follows: , where represents the different datatypes within the 
dataset. Hence, will be 0 if i and j are never clustered together , 1 if i and j are always 
clustered together, and between 0 and 1, if i and j are clustered together in some datatypes.

We refer to as the similarity matrix and as the distance matrix. The matrix of 
pairwise distances can be directly used by a similarity-based clustering algorithm such as 
agglomerative hierarchical clustering, PAM or dynamic tree cut to partition the dataset. The 
framework of the proposed data integration and disease subtyping methodology is illustrated in 
Figure 1.
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2.3.1. Further Splitting Discovered Groups

At this stage, we attempt to sub-split the discovered subgroups to better identify the clusters. Given 
that the subgroup identification proposed here is an unsupervised approach, prior information such 
as patient demographics that may be predominant are missing. The presence of a subgroup can 
therefore be obscured. In addition, there may be distinct subgroups that share clinically relevant 
characteristics. For instance the already identified subgroups of breast cancer, Luminal A and 
Luminal B, are both estrogen receptor positive, which may require the two groups to be further 
examined to identify the heterogeneity between them. First, we check the agreement between the 
constructed connectivity matrices of each data type. An entry will be ‘0’ if the pair of subjects, 

are never clustered together and ‘1’ if they are always clustered together. If the pair is 
clustered together only within the connectivity matrices of certain datatypes, we consider no 
agreement between the two subjects. If there is an agreement that exceed the set threshold (e.g., 
>50%), we consider further splitting the subgroups into clusters. 

= (9)
In order to sub-split the identified subgroups we have used the gap statistics. Gap statistic is a method 
used to estimate the most possible number of clusters in a partition clustering. We have used the 
criterion introduced by Tibshirani et. al. [26] that uses the output of any clustering algorithm by 
comparing  the  change  in  within-cluster  dispersion  with  that  expected  under  an appropriate 
reference null distribution. Suppose be the sum of the pairwise distances for all points in cluster 

and be the sample size, then;
. (10)

can be defined as the within-cluster sum of squares around the cluster means. The gap statistic 
can then be computed as . (11)                      
where denotes the expectation under a sample of size from the reference distribution. We have 
applied the gap statistic only on subgroups that have at least a certain number of subjects (e.g., 30). 
The subgroup(s) are split into clusters with varying values of . Note that, if the 
optimal number of clusters using the Tibshirani criterion is 1, no further splitting would be required. 
If otherwise, the subgroup would be further split into clusters. One limitation of further splitting 

Figure 1. Framework of the proposed subtyping and data integration method
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the subgroups is the potential of overfitting. As the within-cluster similarity increases when forming 
new and finer clusters, it may also lead to fitting the noise. In order to prevent the overfitting, we 
introduced a regularization term that restricts high number of clusters by reducing the gap ratio each 
time a new cluster is introduced. 

3. Results

The results of the proposed method using five different datasets is reported in Table 2, where k
denotes the optimal cluster size and Cox P denotes the statistical significance between identified 
subtypes estimated based on the predictive accuracy on the survival time. The subtypes are analyzed
using the Kaplan-Meier analysis and their statistical significance is assessed using Cox regression.
The integrated results clearly show a better differentiation than the individual data types.

Our results are compared with PINS, CC, SNF, iCluster+ and maxSilhoutte methods. The results 
have shown that the proposed integration significantly differentiates the identified subtypes for all 
investigated diseases and outperforms the integrated results of the aforementioned state-of-the-art 
techniques. Figure 2 (left) shows the Kaplan-Meier survival curves of the proposed methodology 
using the acute myeloid leukemia (LAML) dataset compared with the survival curves obtained 
through integration of mRNA, methylation and miRNA data using PINS (center) and CC (right).  
The proposed integrative clustering with somatic variants, methylation, mRNA and miRNA
discovers two patient groups with significantly different survival profiles (p-value = 10-3). In 
contrast, the integrative clustering without somatic variants discovers four different patient groups 
with less significant survival profiles (p-value = 2.4x10-3). These survival curves clearly show that 
incorporating qualitative data (i.e. somatic variants) into the integration process outperforms the 
subtyping performance. We observed similar performances on the other datasets. 

3.1. Further Analysis of Discovered Subtypes

Herein, we looked into significant survival differences to identify cancer subtype specific 
biomarkers. Specifically, we investigated mutations that are abundant in patients within the short-

Figure 2. Kaplan-Meier survival curves of integrative genomic data clustering using proposed approach (left), PINS 
(center) and CC (right). 
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2.3.1. Further Splitting Discovered Groups

At this stage, we attempt to sub-split the discovered subgroups to better identify the clusters. Given 
that the subgroup identification proposed here is an unsupervised approach, prior information such 
as patient demographics that may be predominant are missing. The presence of a subgroup can 
therefore be obscured. In addition, there may be distinct subgroups that share clinically relevant 
characteristics. For instance the already identified subgroups of breast cancer, Luminal A and 
Luminal B, are both estrogen receptor positive, which may require the two groups to be further 
examined to identify the heterogeneity between them. First, we check the agreement between the 
constructed connectivity matrices of each data type. An entry will be ‘0’ if the pair of subjects, 

are never clustered together and ‘1’ if they are always clustered together. If the pair is 
clustered together only within the connectivity matrices of certain datatypes, we consider no 
agreement between the two subjects. If there is an agreement that exceed the set threshold (e.g., 
>50%), we consider further splitting the subgroups into clusters. 

= (9)
In order to sub-split the identified subgroups we have used the gap statistics. Gap statistic is a method 
used to estimate the most possible number of clusters in a partition clustering. We have used the 
criterion introduced by Tibshirani et. al. [26] that uses the output of any clustering algorithm by 
comparing  the  change  in  within-cluster  dispersion  with  that  expected  under  an appropriate 
reference null distribution. Suppose be the sum of the pairwise distances for all points in cluster 

and be the sample size, then;
. (10)

can be defined as the within-cluster sum of squares around the cluster means. The gap statistic 
can then be computed as . (11)                      
where denotes the expectation under a sample of size from the reference distribution. We have 
applied the gap statistic only on subgroups that have at least a certain number of subjects (e.g., 30). 
The subgroup(s) are split into clusters with varying values of . Note that, if the 
optimal number of clusters using the Tibshirani criterion is 1, no further splitting would be required. 
If otherwise, the subgroup would be further split into clusters. One limitation of further splitting 
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the subgroups is the potential of overfitting. As the within-cluster similarity increases when forming 
new and finer clusters, it may also lead to fitting the noise. In order to prevent the overfitting, we 
introduced a regularization term that restricts high number of clusters by reducing the gap ratio each 
time a new cluster is introduced. 

3. Results

The results of the proposed method using five different datasets is reported in Table 2, where k
denotes the optimal cluster size and Cox P denotes the statistical significance between identified 
subtypes estimated based on the predictive accuracy on the survival time. The subtypes are analyzed
using the Kaplan-Meier analysis and their statistical significance is assessed using Cox regression.
The integrated results clearly show a better differentiation than the individual data types.

Our results are compared with PINS, CC, SNF, iCluster+ and maxSilhoutte methods. The results 
have shown that the proposed integration significantly differentiates the identified subtypes for all 
investigated diseases and outperforms the integrated results of the aforementioned state-of-the-art 
techniques. Figure 2 (left) shows the Kaplan-Meier survival curves of the proposed methodology 
using the acute myeloid leukemia (LAML) dataset compared with the survival curves obtained 
through integration of mRNA, methylation and miRNA data using PINS (center) and CC (right).  
The proposed integrative clustering with somatic variants, methylation, mRNA and miRNA
discovers two patient groups with significantly different survival profiles (p-value = 10-3). In 
contrast, the integrative clustering without somatic variants discovers four different patient groups 
with less significant survival profiles (p-value = 2.4x10-3). These survival curves clearly show that 
incorporating qualitative data (i.e. somatic variants) into the integration process outperforms the 
subtyping performance. We observed similar performances on the other datasets. 

3.1. Further Analysis of Discovered Subtypes

Herein, we looked into significant survival differences to identify cancer subtype specific 
biomarkers. Specifically, we investigated mutations that are abundant in patients within the short-

Figure 2. Kaplan-Meier survival curves of integrative genomic data clustering using proposed approach (left), PINS 
(center) and CC (right). 
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term survival group but not within the long-term survival group and vice versa. For LAML, mutated 
genes that are abundant in patients within the short-term survival group are TP53, DNMT3A and 
FLT3 while NPM1 is found to be enriched in long-term survival groups. VHL is mutated in all 
subgroups of KIRC except one in which all patients survive at the end of the study. Similarly,
PBRM1 is found to have high mutation rates on patients with short-term survivals and low mutation 
rates on patients with long-term survivals. Our results show that GBM subtypes are highly 
influenced by methylation profiles (See Table 2). The genes identified as biomarkers in GBM are 
TTN, TP53, PTEN and EGFR. The mutation rates of those genes are significantly higher in patients 
that have short-term survival rates. IDH1 and ATRX are highly enriched in patients with long-term
survival. Parsons et. al. have indeed shown that patients with IDH1 mutation usually have a 
significantly longer survival [27] and IDH1 can be used as target for therapy and drug development
[28]. High mutations in BRAF and p53 were determined in patients with short-term survival of 
COAD. Contrary to recent studies, no significant association was found between KRAS and short-
term survival [29]. We have further compared the BRCA subtypes with known targets. Out of 172 
patients, there are 34 ER-negative (ER-), 134 ER-positive (ER+) and 4 not evaluated. 27 out of 34 
ER- patients are found to have a short-term survival, whereas the ER+ patients are uniformly 
distributed across the four clusters identified. 

Table 2. Comparison of the subtypes identified using the proposed method and state-of-the-art techniques. Cells 
highlighted in green have Cox P-values < 0.01. Cells highlighted in yellow have Cox P-values between 0.01 and 0.05.

Proposed PINS CC SNF iCluster+ maxSilhoutte
Name Data type k Cox P k Cox P k Cox P k Cox P k Cox P k Cox P
GBM mRNA

Methylation
miRNA
Somatic Variant
Integration

2
2
3
2
6

0.408
10-4

0.051
0.016
4x10-5

2
2
4
-
3

0.408
10-4

0.086
-

8.7x10-5

5
6
6
-
7

0.281
0.001
0.526

-
0.039

2
2
2
3
4

0.992
0.017
0.401
0.632
0.162

10
10
10
8
5

0.056
0.003
0.09

0.324
0.156

2
3
2
-
2

0.408
10-4

0.276
-

0.408
LAML mRNA

Methylation
miRNA
Somatic Variant
Integration

6
4
2
6
2

0.003
0.893
0.065
0.469
10-3

5
6
2
-
4

0.003
0.239
0.072

-
2.4x10-3

6
7
6
-
8

8x10-4

0.049
0.017

-
0.035

2
2
3
3
3

0.327
0.993
0.183
0.532
0.027

6
10
-
5
5

0.01
0.002

-
0.324
0.036

2
2
2
-
3

0.027
0.04
0.07

-
0.032

BRCA mRNA
Methylation
miRNA
Somatic Variant
Integration

2
4
3
2
4

0.902
0.048
0.218
0.002
3x10-4

2
4
3
-
7

0.902
0.048
0.218

-
3.4x10-2

8
8
5
-
7

0.114
0.578
0.142

-
0.667

2
5
2
3
2

0.969
0.878
0.105
0.324
0.398

9
10
-

10
10

0.101
0.083

-
0.132
0.402

2
2
2
-
2

0.902
0.702
0.093

-
0.902

COAD mRNA
Methylation
miRNA
Somatic Variant
Integration

2
2
4
9
8

0.109
0.719
0.468
0.365
0.019

2
2
4
-
5

0.113
0.741
0.452

-
0.201

8
8
7
-
5

0.048
0.034
0.318

-
0.225

2
2
3
3
2

0.148
0.389
0.131
0.218
0.246

6
10
-

10
10

0.29
0.194

-
0.421
0.319

2
2
2
-
2

0.113
0.741
0.801

-
0.113

KIRC mRNA
Methylation
miRNA
Somatic Variant
Integration

2
3
2
2
5

0.176
0.111
0.138
0.076
3x10-3

2
3
2
-
4

0.176
0.111
0.138

-
1.3x10-4

7
6
5
-
6

0.073
0.128
0.509

-
0.104

2
3
2
3
3

0.219
0.577
0.138
0.124
0.248

9
10
-
9
7

0.072
0.14

-
0.348
0.067

2
3
2
-
2

0.176
0.111
0.138

-
0.176
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4. Summary and Conclusion 

In this paper, we have identified cancer subtypes using somatic variant, mRNA, methylation, and 
miRNA data types. This method can be applied on any quantitative or qualitative dataset for the 
purpose of disease categorization, patient subgroup detection, response to treatment identification, 
drug development and repurposing, or biomarker detection. This method can be applied on any 
dataset for the purpose of disease categorization, patient subgroup detection, response to treatment 
identification, drug development and repurposing, or biomarker detection. The method scales well 
to high dimensional data. However, the time complexity is higher as compared to classical 
approaches due to repeated perturbations. This can be resolved by performing the computations in 
parallel. Another limitation of the proposed method is that all data types are treated equally in 
determining subtypes, which may not always be appropriate. For instance, studies have shown that 
methylation plays a major role in determining the GBM subtypes. One way to address this limitation 
is to combine the connectivity matrices in a weighted manner. Future work includes: i) incorporating 
different mutation types (silent, missense, nonsense, etc.), classifications (SNP, insertion, deletion, 
etc.) and counts into the proposed disease subtyping method ii) incorporating clinical data into the 
integration process to examine the significance of different survival profiles and iii) utilizing the 
identified biomarkers to measure pathway deregulations, which would justify the application of 
certain therapies and customize treatment plans for individuals.
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term survival group but not within the long-term survival group and vice versa. For LAML, mutated 
genes that are abundant in patients within the short-term survival group are TP53, DNMT3A and 
FLT3 while NPM1 is found to be enriched in long-term survival groups. VHL is mutated in all 
subgroups of KIRC except one in which all patients survive at the end of the study. Similarly,
PBRM1 is found to have high mutation rates on patients with short-term survivals and low mutation 
rates on patients with long-term survivals. Our results show that GBM subtypes are highly 
influenced by methylation profiles (See Table 2). The genes identified as biomarkers in GBM are 
TTN, TP53, PTEN and EGFR. The mutation rates of those genes are significantly higher in patients 
that have short-term survival rates. IDH1 and ATRX are highly enriched in patients with long-term
survival. Parsons et. al. have indeed shown that patients with IDH1 mutation usually have a 
significantly longer survival [27] and IDH1 can be used as target for therapy and drug development
[28]. High mutations in BRAF and p53 were determined in patients with short-term survival of 
COAD. Contrary to recent studies, no significant association was found between KRAS and short-
term survival [29]. We have further compared the BRCA subtypes with known targets. Out of 172 
patients, there are 34 ER-negative (ER-), 134 ER-positive (ER+) and 4 not evaluated. 27 out of 34 
ER- patients are found to have a short-term survival, whereas the ER+ patients are uniformly 
distributed across the four clusters identified. 

Table 2. Comparison of the subtypes identified using the proposed method and state-of-the-art techniques. Cells 
highlighted in green have Cox P-values < 0.01. Cells highlighted in yellow have Cox P-values between 0.01 and 0.05.

Proposed PINS CC SNF iCluster+ maxSilhoutte
Name Data type k Cox P k Cox P k Cox P k Cox P k Cox P k Cox P
GBM mRNA

Methylation
miRNA
Somatic Variant
Integration

2
2
3
2
6

0.408
10-4

0.051
0.016
4x10-5

2
2
4
-
3

0.408
10-4

0.086
-

8.7x10-5

5
6
6
-
7

0.281
0.001
0.526

-
0.039

2
2
2
3
4

0.992
0.017
0.401
0.632
0.162

10
10
10
8
5

0.056
0.003
0.09

0.324
0.156

2
3
2
-
2

0.408
10-4

0.276
-

0.408
LAML mRNA

Methylation
miRNA
Somatic Variant
Integration

6
4
2
6
2

0.003
0.893
0.065
0.469
10-3

5
6
2
-
4

0.003
0.239
0.072

-
2.4x10-3

6
7
6
-
8

8x10-4

0.049
0.017

-
0.035

2
2
3
3
3

0.327
0.993
0.183
0.532
0.027

6
10
-
5
5

0.01
0.002

-
0.324
0.036

2
2
2
-
3

0.027
0.04
0.07

-
0.032

BRCA mRNA
Methylation
miRNA
Somatic Variant
Integration

2
4
3
2
4

0.902
0.048
0.218
0.002
3x10-4

2
4
3
-
7

0.902
0.048
0.218

-
3.4x10-2

8
8
5
-
7

0.114
0.578
0.142

-
0.667

2
5
2
3
2

0.969
0.878
0.105
0.324
0.398

9
10
-

10
10

0.101
0.083

-
0.132
0.402

2
2
2
-
2

0.902
0.702
0.093

-
0.902

COAD mRNA
Methylation
miRNA
Somatic Variant
Integration

2
2
4
9
8

0.109
0.719
0.468
0.365
0.019

2
2
4
-
5

0.113
0.741
0.452

-
0.201

8
8
7
-
5

0.048
0.034
0.318

-
0.225

2
2
3
3
2

0.148
0.389
0.131
0.218
0.246

6
10
-

10
10

0.29
0.194

-
0.421
0.319

2
2
2
-
2

0.113
0.741
0.801

-
0.113

KIRC mRNA
Methylation
miRNA
Somatic Variant
Integration

2
3
2
2
5

0.176
0.111
0.138
0.076
3x10-3

2
3
2
-
4

0.176
0.111
0.138

-
1.3x10-4

7
6
5
-
6

0.073
0.128
0.509

-
0.104

2
3
2
3
3

0.219
0.577
0.138
0.124
0.248

9
10
-
9
7

0.072
0.14

-
0.348
0.067

2
3
2
-
2

0.176
0.111
0.138

-
0.176
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4. Summary and Conclusion 

In this paper, we have identified cancer subtypes using somatic variant, mRNA, methylation, and 
miRNA data types. This method can be applied on any quantitative or qualitative dataset for the 
purpose of disease categorization, patient subgroup detection, response to treatment identification, 
drug development and repurposing, or biomarker detection. This method can be applied on any 
dataset for the purpose of disease categorization, patient subgroup detection, response to treatment 
identification, drug development and repurposing, or biomarker detection. The method scales well 
to high dimensional data. However, the time complexity is higher as compared to classical 
approaches due to repeated perturbations. This can be resolved by performing the computations in 
parallel. Another limitation of the proposed method is that all data types are treated equally in 
determining subtypes, which may not always be appropriate. For instance, studies have shown that 
methylation plays a major role in determining the GBM subtypes. One way to address this limitation 
is to combine the connectivity matrices in a weighted manner. Future work includes: i) incorporating 
different mutation types (silent, missense, nonsense, etc.), classifications (SNP, insertion, deletion, 
etc.) and counts into the proposed disease subtyping method ii) incorporating clinical data into the 
integration process to examine the significance of different survival profiles and iii) utilizing the 
identified biomarkers to measure pathway deregulations, which would justify the application of 
certain therapies and customize treatment plans for individuals.
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Typical personal medical data contains sensitive information about individuals. Storing or
sharing the personal medical data is thus often risky. For example, a short DNA sequence can
provide information that can identify not only an individual, but also his or her relatives.
Nonetheless, most countries and researchers agree on the necessity of collecting personal
medical data. This stems from the fact that medical data, including genomic data, are an
indispensable resource for further research and development regarding disease prevention
and treatment. To prevent personal medical data from being misused, techniques to reliably
preserve sensitive information should be developed for real world applications. In this paper,
we propose a framework called anonymized generative adversarial networks (AnomiGAN),
to preserve the privacy of personal medical data, while also maintaining high prediction
performance. We compared our method to state-of-the-art techniques and observed that
our method preserves the same level of privacy as differential privacy (DP) and provides
better prediction results. We also observed that there is a trade-off between privacy and
prediction results that depends on the degree of preservation of the original data. Here,
we provide a mathematical overview of our proposed model and demonstrate its validation
using UCI machine learning repository datasets in order to highlight its utility in practice.
The code is available at https://github.com/hobae/AnomiGAN/

Keywords : Deep neural networks, generative adversarial networks, anonymization, differen-
tial privacy

1. Introduction

To restrain the use of medical data for illegal practices, the right to privacy has been in-
troduced and is being adaptively amended. The right to privacy of medical data should be
enforced because medical data contains static sensitive information of all individuals including
genetic information; therefore, a leak of such irreversible information could be very danger-
ous. For example, Homer et al.1 and Zerhouni et al.2 proposed a statistical-based attacks to
GWAS demonstrating the possibility of reviling the presence of an individual in a group. The
genetic markers (short DNA sequences) of an individual constitutes a very sensitive piece of
information regarding their identity. Patterns of genetic markers can easily be used to identify

c© 2019 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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