The 2020 12th International Conference on Knowledge and Systems Engineering (KSE)

Disease subtyping using community detection from
consensus networks

Hung Nguyen
Computer Science & Engineering
University of Nevada, Reno
Reno, USA
hungnp @nevada.unr.edu

Quang-Huy Nguyen

Bang Tran
Computer Science & Engineering
University of Nevada, Reno
Reno, USA
bang.t.s@nevada.unr.edu

Duc-Hau Le

Duc Tran
Computer Science & Engineering
University of Nevada, Reno
Reno, USA
duct@nevada.unr.edu

Tin Nguyen*

Department of Computational Biomedicine Department of Computational Biomedicine Computer Science & Engineering

Vingroup Big Data Institute
Hanoi, Vietnam
huynguyen96.dnu@gmail.com

Abstract—Cancer is a complex disease including a range of
disorders that are activated simultaneously by multiple biologi-
cal processes on multiple levels. Various genome-wide profiling
techniques have been developed to capture the dynamics of these
processes at the epigenomic, transcriptomic, and proteomic levels.
Integrative analysis of data from these sources has the potential
to differentiate cancer subtypes from a holistic perspective that
reveals connections that otherwise cannot be detected using obser-
vations from a single data type. In this article, we present a novel
approach named DSCC (Disease Subtyping using Community
detection from Consensus networks) that is able to discover
disease subtypes from multi-omics data and is robust against
noise. In an extensive analysis using simulation studies and 5,782
real patients belonging to 20 cancer datasets from The Cancer
Genome Atlas, we demonstrate that DSCC outperforms state-of-
the-art methods by correctly identifying known patient groups
and novel subtypes with significantly different survival profiles.

Index Terms—multi-omics integration, cancer subtyping, sur-
vival analysis, community detection

I. INTRODUCTION

Despite advances in cancer prognosis and treatment, the
probability of a person being diagnosed with prostate or
breast cancer has increased twice after 20 years of cancer
screening [1], [2]. A large number of patients still fail therapy,
resulting in disease progression, recurrence, and overall sur-
vival reduction [3]. Concurrently, 30-50% of patients with non-
small cell lung cancer (NSCLC) quickly advance to recurrence
and die after curative resection [4], suggesting that a particular
subgroup of patients should have received more rigorous treat-
ments at initial stages. Moreover, adjuvant and neoadjuvant
chemotherapy have proved to be an efficient method for
significantly survival improvement of patients with advanced
early-stage cancer [5]. These discoveries suggest that a better
prognosis method would allow us to manage these diseases
better: patients whose cancer is likely to advance rapidly
would need more aggressive treatment. However, cancer is
widely understood to be a heterogeneous disease. A tumor
is a complex ecosystem containing tumor cells, as well as
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various infiltrating endothelial, hematopoietic, stromal, and
other cell types that can influence the function of the tumor as
a whole [3]. Due to the diversity of mutations and molecular
mechanisms, individual tumor’s behavior and response to
treatment vary greatly [6]. Therefore, it is important to identify
cancer subtypes based on common molecular features and and
subgroups of patients [7]-[10]. This can also benefit a wide
range of studies related to molecular data from aging, obesity
to drug response [11]-[14].

Advanced genome sequencing has demonstrated that cancer
within a single patient is a heterogeneous mixture of genet-
ically distinct sub-clones that arise through evolution [15]-
[17]. Therefore, recent subtyping methods have shifted to-
ward multi-omics data integration in order to differentiate
between subtypes from a holistic perspective that takes into
consideration phenomena at different molecular levels (DNA
methylation, chromatin openness, microRNA, and other non-
coding RNA). These methods can be classified into three main
categories: simultaneous data decomposition methods, joint
statistical models, and similarity-based approaches. Method
in the first category, such as md-modules [18], intNMF [19],
and LRAcluster [20], focus on finding a common pattern
that exists across multi data types in lower-dimensional rep-
resentation. However, the subtyping outcomes heavily rely on
the assumption that all molecular signals can be linearly and
simultaneously reconstructed.

Methods in the second category use statistical approaches
in which each data type follows a mixture of distributions
and the integration of multiple data types is constructed using
a joint statistical model. Methods in this category include
BCC [21], MDI [22], iClusterBayes [23], iClusterPlus [24],
and iCluster [25], [26]. The main drawback of those methods
is that the resulted subtypes strongly depend on the correctness
of statistical assumptions on the data. Moreover, the statistical-
based methods often require inputs for many parameters and
produce results after a long computational time.
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Fig. 1. The overall workflow of DSCC. The method consists of three main steps: 1) gene filtering using non-negative matrix factorization, ii) building patients
connectivities using k-means with different numbers of clusters, and iii) clustering using community detection.

Methods in the last category follow a similarity-based
approach in which patient connectivity for each data is rep-
resented in the form of a graph with patients as node and
connectivity as edges (indicates how frequently the patients
are grouped). A similarity matrix is generated by merging
the connectivity from all data types, and a similarity-based
algorithm is used to identify subtypes. Methods in this cat-
egory include SNF [27], NEMO [28], PINS [7], [29], [30],
CIMLR [6], and SCFA [31]. SNF integrates multi-omics data
sets using a network fusion method by creating a network
for each data type and then fuses them into a single similarity
network. NEMO computes inter-patient similarity matrices for
each data type through a radial basis function kernel and uses
spectral clustering to cluster the combined similarity matrix.
PINS identifies how often the patients are grouped together
when the data are perturbed and clusters strongly connected
patients across all data types together. On the other hand,
CIMLR combines multiple gaussian kernels (one per data
type) to measure the similarity between each pair of patients
and uses k-means to subtype the final similarity matrix. SCFA
uses an autoencoder to eliminate unimportant genes and factor
analysis to project large data in lower dimensions. Next, it
uses k-mean clustering to determine cluster assignments from
each lower dimension presentation and uses an ensemble meta-
clustering algorithm to generate final clusters. Methods in this
category are usually computational efficient and can easily
support different omic types. However, it may be difficult to
interpret the results in term of how original features contributes
to the discovered subtypes.

Here we introduce DSCC (Disease Subtyping using Com-
munity detection from Consensus networks) that exploits the
local relationships between patients from each data type to
build a consensus network from patient connectivities. It then
uses a community detection technique to discover different
groups within patients that have significantly different survival
profiles. In an extensive analysis using simulation studies
and 5,782 real patients related to 20 cancer datasets from
The Cancer Genome Atlas, we demonstrate that DSCC is
robust against noise and outperforms state-of-the-art methods
in identifying known patient classes and novel subtypes with
significantly different survival profiles.

II. METHODS

Figure | shows the overall workflow of DSCC. The method
requires a list of data matrices (mMRNA, methylation, miRNA,
etc.). In each matrix, rows represent samples/patients, and
columns represent genes/features. For each matrix, the method
first applies gene filtering using non-negative matrix factor-
ization and then builds connectivities between patients using
k-means clustering. Finally, the method applies community
detection on the combined connectivity using Louvain modu-
larity [32] to cluster patients.

A. Gene filtering using Non-negative Matrix Factorization

Our hypothesis is that although the total number of features
in omics data is large (e.g. ~20k for mRNA data), only a
subset of them truly differentiates among cancer subtypes.
Therefore, we first focus on filtering out genes that are not
likely to play a major role in subtyping. Figure 2 shows
the workflow of our gene filtering approach using 1-factor
Non-Negative Matrix Factorization (NNMF). Briefly, Matrix
Factorization is a technique that decomposes a matrix into the
product of two lower dimensionality matrices:

V=WxH+FE

where in the context of this article:

e V is a matrix of size p x g (the original omic data, e.g.
gene expression matrix), in which p is the number of
patients and g is the number of genes;

o W is a matrix of size p x k, a representation of patients
in a latent space with the number of factors is k;

o H is a matrix of size k x g representing meta-gene matrix
in the latent space; and

e IV is a matrix of size p x g, the error between the original
data and the reconstructed data from W and H.

The number of latent factors & has been used as the number
of clusters in a number of clustering methods [33], [34]. If
a dataset consists of & subtypes, it is expected that genes
contributing to differentiating subtypes will have different
expression patterns among subtypes and these patterns can
be captured in each latent factor. In our method, we use
NNMEF to filter features that have insignificant contributions
to differentiating subtypes rather than directly assign clusters
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Fig. 2. Gene filtering using non-negative matrix factorization. The original
data matrix is decomposed into two vectors representing patients and their
features in 1-dimensional latent space. The error of the reconstructed data
using these two vectors is used to rank each gene. Only 30% of genes that
have the largest error are kept for the next steps.

using data from NNMF. Here, we choose the number of
factors £k = 1. This makes it difficult to fit the model for
genes that have significantly different expression patterns on
different subtypes. As a result, genes that have a significant
contribution to differentiating subtypes will have more errors
in the reconstructed data. We then rank the genes by its total
absolute error > |E 4| and keep only 30% of genes that have
the largest error for the next steps.

After filtering unimportant features, the number of remain-
ing features is still on the scale of hundreds or even thousands.
It is necessary to perform dimension reduction to reduce
the time complexity for network construction. Therefore, we
finally use principal component analysis to perform dimension
deduction on each filtered data with the number of principal
components is 20. This data is then used to generate connec-
tivities between patients in the next step.

B. Consensus network generation and subtyping

To generate the overall connectivities for patients in each
data type, we run k-means on the 20-dimension data with
different numbers of clusters. The connectivities between
patients are defined as a square matrix where both rows and
columns represent patients. Its values are 1 when two patients
are clustered into the same group and otherwise 0.

In this step, we aim to group a certain number of patients
into the same clusters. This can be achieved by adjusting
the number of clusters inputted for the k-means algorithm.
For example, if the number of patients is p and the number
of clusters is k, it is expected that each cluster will have
an average of £ patients, assuming that the clustering yields
balanced clusters. We choose the number of clusters & so that
each cluster will have the number of members from 2 to 50.
Our assumption is that if a group of patients belongs to the
same subtypes then they will tend to establish connections
regardless of the predefined number of clusters. Also, by using
a large different numbers of clusters, we expect that both local
and global connections between patients will be established.

It is known that the k-means algorithm often converge
at local minima, especially with big numbers of clusters.
However, the more time that samples clustered into the same
groups, the more chance these samples belong to the same

cluster in the final assignments. Therefore, for each number
of clusters k£, we run k-means 1,000 times. The final patient
connectivity matrix for each data type is the average of
connectivities from all runs of all k.

Finally, we create an undirected weighted graph from the
average of all patient connectivities across all data types.
We apply community detection using the Louvain method to
discover communities from the graph as the final clusters.
The Louvain algorithm [32] optimizes a modularity quality
function in two elementary phases: i) local moving of nodes,
and ii) network aggregation. The modularity function measures
the edges density within communities compared to those
between communities and is computed as follow:

1 kik; o
Q=55 |45 - 52 o(ercy

)
where
o A;j is the edge weight between the two nodes ¢ and j;

o ki =20, Aigs
1 .
o m= 520, A
e c; is the community that node ¢ is assigned; and
e d(u,v) =1if u=v and 0 otherwise.

First, each node in the graph is assigned to a community.
In the nodes moving phase, each node is moved to one of its
neighbor communities that yields the largest increase in the
quality function. If no increase is gained from all moves, the
node remains in its original community. This process repeats
until no increase in the quality function occurs. In the network
aggregation phase, each community in the first phase becomes
a node to form an aggregate network. The two phases are
repeated until the modularity quality function converges. The
final detected communities for the network are the output
clusters for all data types.

ITI. RESULTS

In this section, we assess the performance of the proposed
method using i) simulation studies and ii) 20 real datasets from
TCGA. We compare DSCC with other four state-of-the-art
methods in cancer subtyping including Consensus Clustering
(CC), Similarity Network Fusion (SNF), iClusterBayes (iCB),
and Cancer Integration via Multikernel LeaRning (CIMLR).
Among the four methods, CC is the only method that does not
inherently support multiple data type integration. Therefore, in
each analysis, we concatenate all data types for the integrative
analysis.

We note that our method is completely unsupervised learn-
ing, in which besides input is multi-omics data, no additional
knowledge is provided for our clustering method. To make it
fair with all other methods, we let each method detect the true
number of clusters from the input data and use that number
to generate the final cluster assignments.

A. Simulation study

To generate data for the simulation study, we use three
different models to simulate different types of omics data
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Fig. 3. ARI values of clusters produced by DSCC, Consensus Clustering
(CC), Similarity Network Fusion (SNF), iClusterBayes (iCB) and Cancer
Integration via Multikernel LeaRning (CIMLR) using 20 simulated data.

including Gaussian, Beta-like, and Binary model. These sim-
ulation models are inspired by Pierre-Jean et. al. [35].

We simulate three different data types using the three
models. Each data type has 100 samples, 10,000 features,
and is splitted into five groups in which each group has
50 differential features to distinguish between clusters. The
parameters for each model is as follow: for Gaussian model,
u = 2 and ¢ = 1; for Beta-like model, u; = —2, o1 = 0.5,
e = —2, and o2 = 0.5; and for Binary model, we set the
probabilty p = 0.6 for a value to be 1.

We also simulated noise in each data type, in which we
define the based-noise for each model as follow: for Beta-like
model, we add noise using normal distribution with ¢+ = 0 and
o = 1; for Beta-like model, we also add noise using normal
distribution with ¢ = 0 and ¢ = 0.1; and for Binary model,
we add randomly add 1 value to the data with probability p =
0.1. With this based level of noise, clusters in all data types
are well separated. We finally simulate in total 20 datasets
in which each dataset consists of three data types from the
three distributions with different noise levels. The noise level
is adjusted by increasing ¢ and p in the noise added to the
data from 10% to 200%.

Since the true cluster assignments are known, we use
Adjusted Rand Index (ARI) [36] to assess the performance
of the methods. Briefly, ARI measures the similarity between
two cluster assignments with correction for chance. ARI values
range from —1 to 1 where ARI = 1 indicates a perfect match
between two cluster assignments, AR/ = 0 indicates the
agreements are expected to be the same with random cluster
assignments, and negative ARI indicates that the agreement is
less than what is expected from a random result.

Figure 3 shows the distribution of ARIs for the 20 simulated
datasets for the five methods. CC produces clusters with the
lowest ARI values since this method fails to detect the true
number most of the time. SNF, iCB, and CIMLR can reach
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ARI values of 1 when the level of noise < 30%. However,
when the noise level increases more, their performance drasti-
cally decreases. While iCB can still detect the true number of
clusters when the noise level increase, SNF and CIMLR fail to
do so when the noise level is > 100%. On the other hand, it is
clear that DSCC can easily maintain the ARI values close to 1
in all datasets. The performance of DSCC is slightly affected
only when the noise level is > 150%.

B. Performance on TCGA data

To better assess the performance of DSCC, we compare
DSCC and CC, SNEF, iCB, and CIMLR on 20 TCGA datasets.
Since the true subtypes are not available for any of the datasets,
we use Cox Proportional-Hazards Model [37] to validate
the subtypes produced by each method. The p-values from
this regression model represent the association between the
survival time of patients with the subtype they are assigned.
Table I show the Cox p-values of subtypes produced by the
five methods on the 20 datasets.

TABLE I
COX P-VALUES OF SUBTYPES IDENTIFIED BY DSCC, CC, SNF,
ICLUSTERBAYES (ICB), AND CIMLR FOR 20 TCGA DATASETS. CELLS
IN YELLOW INDICATE SIGNIFICANT P-VALUES (< 0.05). CELLS IN GREEN
INDICATE THE MOST SIGNIFICANT P-VALUE FOR EACH DATASET.

#  Dataset DSCC CcC SNF iCB CIMLR
1 ACC 6.0e-05 8.7e-04 4.3e-05 5.4e-03 1.3e-01
2  BLCA 7.2e-05 1.1e-01 1.1e-01 2.1e-01 4.4e-01
3  BRCA 1.7e-03  1.0e-02 1.2e-01 2.7e-02 5.2e-03
4 CESC 1.6e-02 2.2e-01 5.1e-01 2.0e-02 1.9e-01
5 CHOL 59e-01 7.9e-02 5.7e-01 7.0e-01 3.4e-01
6 COAD 2.6e-01 5.5e-01 1.3e-01 4.2e-01 2.6e-01
7 COADREAD 6.6e-01 7.2e-01 6.6e-01 8.0e-01 3.3e-01
8 DLBC 8.8e-01 5.1e-01 7.5e-01 1.9e-01 7.4e-01
9 ESCA 3.1e-01 8.1e-01 3.9e-01 1.9e-01 5.6e-01
10 GBM 5.0e-03 7.5e-01 2.1e-02 2.6e-01 5.4e-02
11  GBMLGG 2.6e-16 4.9e-04 4.8e-14 8.0e-02 3.7e-10
12 HNSC 1.5e-03 5.1e-01 3.7e-01 7.8e-02 4.0e-01
13 KICH 5.1e-01  9.3e-01 7.0e-01 1.4e-01 4.6e-01
14 KIPAN 6.3e-19 5.3e-08 2.1e-07 1.4e-01 9.8e-05
15 KIRC 1.7e-03 8.3e-01 6.9e-01 2.1e-01 2.9e-01
16 KIRP 7.0e-03 2.2e-02  5.3e-03 4.9e-02 1.9e-02
17 LAML 3.6e-04 2.0e-01 1.7e-03 8.7e-03 8.7e-01
18 LGG 2.4e-19 13e-06 1.6e-14 2.3e-05 7.le-15
19 LIHC 3.2e-04 82e-01 3.3e-01 2.0e-01 1.3e-01
20 LUAD 7.5e-03 7.6e-01 5.0e-01 22e-02 3.7e-01
#Sigificant 14 6 7 7 5

Among 20 datasets, there are 7 datasets (CHOL, COAD,
COADREAD, DLBC, ESCA, KIRC and LIHC) for which
none of the five methods is able to discover subtypes with
significant survival differences. In the remaining 14 datasets,
DSCC identifies subtypes with significantly different survival
profiles on all 14 datasets. That number for CC, SNF, iCB,
and CIMLR is 5, 7, 5, and 5 respectively. Moreover, DSCC
has the most significant p-values for 12 out of 14 datasets.

To further investigate the effect of data integration on
the clustering results using DSCC, we also perform subtyp-
ing analysis for each data type and gather p-values from
the produced clusters. Figure 4 shows the distribution of
—log10(p-value) by each data type and also integrated data
(mRNA, Methylation, and miRNA combine together). Among
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Fig. 4. Cox p-values of subtypes identified by DSCC on each single data type
and on integrated data. Overall, data integration yield better results compared
to those of single data type only.

20 datasets, the Cox p-values obtained from integrated data
has the median —log10(p-value) of 2.5, compared to 1.2, 1.3,
and 1.0 from mRNA, Methylation and miRNA respectively.
With a significant threshold of p-value = 0.05 or —log10(p-
value) = 1.3, subtyping using integrated data shows that it
can identify subtypes with significant differences in survival
profiles while subtyping using single data type fail to do so.

IV. CONCLUSION

In this article, we developed a novel method, DSCC, for
disease subtyping and data integration. DSCC is robust against
noise and can efficiently identify cancer subtypes with signif-
icantly different survival profiles. We validated our method
using 20 simulated datasets and 20 real datasets from TCGA
with a total of 5,782 patients. Our simulation study shows
that DSCC can work well with data that have different distri-
butions. It can precisely detect the true number of clusters and
is robust against noise. Our evaluation on real data shows that
DSCC is able to discover subtypes with significantly different
survival profiles while many other state-of-the-art fail to do so.
It also shows that subtyping using data integration produces
better subtypes compared to subtyping using only a single data
type. The developed method is flexible and can be applied
in a wide range of applications. For future work, we will
combine DSCC with other methods developed in the context of
biological networks [38]-[46], single-cell [47]-[49], genomics
and epigenomics [50]-[58], and drug development [59].

V. SOFWARE AND DATA AVAILABILITY

Datasets from The Cancer Genome Atlas were downloaded
from http://firebrowse.org/. All source code for analyses in this
manuscript is available upon request.
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