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MIA: A Multi-cohort Integrated Analysis for
biomarker identification
Brian Marks1, Nina Hees1, Hung Nguyen1, and Tin Nguyen1,*

1Department of Computer Science and Engineering, University of Nevada, Reno, Nevada, USA
*tinn@unr.edu

Abstract: Advanced high-throughput technologies have produced vast amounts of biological data. Data integration is the
key to obtain the power needed to pinpoint the biological mechanisms and biomarkers of the underlying disease. Two critical
drawbacks of computational approaches for data integration is that they do not account for study bias, as well as the noisy
nature of molecular data. This leads to unreliable and inconsistent results, i.e., the results change drastically when the input is
slightly perturbed or when additional datasets are added to the analysis. Here we propose a multi-cohort integrated approach,
named MIA, for biomarker identification that is robust to noise and study bias. We deploy a leave-one-out strategy to avoid
the disproportionate influence of a single cohort. We also utilize techniques from both p-value-based and effect-size-based
meta-analyses to ensure that the identified genes are significantly impacted. We compare MIA versus classical approaches
(Fisher’s, Stouffer’s, maxP, minP, and the additive method) using 7 microarray and 4 RNASeq datasets. For each approach, we
construct a disease signature using 3 datasets and then classify patients from 8 remaining datasets. MIA outperforms all
existing approaches in terms of both the highest sensitivity and specificity by accurately distinguishing symptomatic patients
from healthy controls.

1 Introduction
High-throughput technologies have generated vast amounts of
genomic data with unprecedented rates. Large public repos-
itories such as the Gene Expression Omnibus,1 The Cancer
Genome Atlas (cancergenome.nih.gov), and ArrayEx-
press,2 store thousands of datasets, within which there are
independent experimental series with similar patient cohorts
and experimental design. Gene expression data, both mi-
croarray and RNA-Seq, are particularly prevalent in public
databases, such that some disease conditions are represented
by half a dozen studies or more.

However, real progress in understanding disease phenom-
ena still lags far behind the gathering of data. Studies often
fail to identify the true cause of phenomena, due to noise,
study bias, or the subtlety of changes in biological signals
between disease and healthy samples. Batch effects, patient
heterogeneity, and disease complexity all complicate the inte-
gration of data from different sources.3 Indeed, for the same
disease, different studies produce different sets of differen-
tially expressed (DE) genes.4, 5 It would be tremendously
beneficial if all datasets associated with a given condition
could be analyzed together, in order to overcome study bias
and to increase sample size.

Meta-analysis of gene expression data has primarily been
used for DE gene detection.6 Rhodes et al.7 were among the
earliest to apply sophisticated meta-analysis methods for DE
gene detection. In their work, p-values from multiple prostate
cancer datasets were combined using Fisher’s method.8 Since
then, other p-value based meta-analysis methods have been ap-
plied, such as Stouffer’s method,9 minP,10 maxP,11 weighted
Fisher’s method,12 and latent variable approaches.13 This
p-value based sort of integration is one means by which meta-
analyses are commonly performed. A recent literature review6

revealed that p-value based meta-analysis for gene detection

accounts for approximately twice as many studies as any other
type of meta-analysis, and is favored for its simplicity and
extensibility. One critical drawback of these p-value-based
approaches is that they neglect the actual changes in gene
expression, i.e. effect sizes. This results in a critical loss of
information. While p-values are in part a function of effect
size, it is also partly a function of sample size.14 For example,
with large sample size, a statistical test will almost always
demonstrate a significant difference, unless the effect size is
exactly zero, which is very unlikely in reality. Simply combin-
ing individual p-values would not be enough to correct such a
problem. In addition, most methods for combining p-values
are sensitive to outliers.

Here we propose a new approach that utilizes techniques
from both classical p-value-based and modern effect-size-
based meta-analyses to reliably identify genes that are signifi-
cantly impacted from both perspectives: classical hypothesis
testing and standardized mean difference. We also apply a
robust leave-one-out technique to avoid disproportionate influ-
ence from a single cohort. We demonstrate the performance
of the proposed approach using 640 Alzheimer’s samples
from 7 Affymetrix and 3 RNASeq datasets. We compare our
new approach to 5 other approaches: Fisher’s,8 Stouffer’s,9

minP,10 maxP,11 and addCLT.15–17 The framework outper-
forms existing approaches in identifying disease signatures
which distinguish symptomatic individuals from healthy indi-
viduals with significant p-values.

We used 3 Affymetrix datasets to serve as our training sets
and then tested the validity our gene set using the remaining
datasets. Each of the meta-analysis techniques were given the
same training set and testing set. For each of the statistical
modeling methods, the testing set classification results were
graphically represented on a receiver operating characteris-
tic (ROC) curve. The area under the curve (AUC) of each
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method was used to determine how effective the gene signa-
tures were at classifying the different samples. The purpose
of our proposed method is to determine a curated set of genes
for a given dataset which can be used to classify a patient as
prone to AD, or not. This can then be used as a means of
making a preemptive diagnosis, which helps to improve the
effectiveness of the management of AD symptoms.18

2 Methods
The pipeline of the proposed framework is shown in Figure 1.
The input consists of n independent studies for the same
disease. Each study can be represented as a matrix where
columns are samples/patients and rows are genes/components.
In each study, the samples are divided into two groups – dis-
ease and control. The goal of the framework is to identify
a robust and consistent set of genes/components that can be
used as biomarkers for future diagnostics. The output of the
framework is a set of genes which has the potential to distin-
guish symptomatic individuals from healthy ones based on
expression data alone.

The framework is divided into four distinct steps: (A) hy-
pothesis testing and effect size estimation for each gene in
each study, (B) meta-analysis in which the p-values and the
effect sizes are combined from m studies, (C) feature selec-
tion based on the computed statistics, and (D) leave-one-out
procedure to test for the stability of the obtained biomarkers.

In the first step (step A), we work with each dataset inde-
pendently. For each gene, we compute the standardized mean
difference (STD) between disease and control samples. Simi-
lar to fold-change, STD represents the difference in expression
of the gene between two groups of samples. The difference
is that STD is less sensitive to the scaling of each platform.
We also perform a classical hypothesis test, using empirical
Bayesian test,19 to determine if the difference between two
groups is observed by chance. After step (A), for each dataset,
we have a list of STDs and p-values. For each gene, we have n
p-values and n STDs – one p-value and one STD per dataset.

In step (B), we combine the p-values and STDs of each
gene. Since these n p-values and n STDs are obtained from
independent datasets, they can be combined using classical
approaches. Here we use the additive approach,15 which
is based on the Central Limit Theorem,20 to combine each
gene’s p-values into one single combined p-value for each
individual gene. At the same time, we also combine the n
independent STDs using the REstricted Maximum Likelihood
(REML) algorithm.21–23 When the REML stops, it outputs the
central tendency of effect sizes for a given gene, as well as its
standard error. We also compute a p-value from the estimated
effect size and standard error. This p-value represents how
reliable the effect size difference is.

In step (C), we select the genes whose summary statis-
tics satisfy certain conditions. We first adjust the combined
Bayesian p-values and the effect-size p-values using False
Discovery Rate.24 We then choose genes whose adjusted p-
values are each less than 1%. After step (C), we have a list

of genes that are significantly impacted by the underlying dis-
ease. To make the framework more robust, we also perform a
leave-one-out procedure. In step (D), we perform n additional
analyses. In each analysis, we remove one of the n studies
and repeat the whole pipeline. Each of the n analyses outputs
a set of impacted genes. We intersect the n+1 sets of genes
to obtain a conservative set of genes which can be used as a
biomarker for the disease. We will describe the details of each
step in the following sections.

2.1 Hypothesis testing and meta-analysis
Here we use the empirical Bayesian test, provided by limma
package,19 to calculate the two-tailed p-values. We then con-
vert these p-values into one-sided p-values. Depending on the
hypothesis, researchers can choose to work with either the
left or right-sided values. Assuming that we are interested in
down-regulated genes, we would focus only on the left-sided
p-values.

2.1.1 Combining p-values
Fisher’s method is the most widely used method to combine
independent p-values. Consider m individual null hypotheses
H0i (i ∈ [1..n]) of n independent studies. The null hypothesis
for the Fisher’s method8 is H0: H0i is true for all i ∈ [1..n].
The alternative hypothesis is HA: H0i is false for at least one
i ∈ [0..n]. Under the null hypothesis, all individual p-values
are independently and uniformly distributed between zero and
one. Fisher’s method uses the log product of the p-values
as the test statistic, which follows chi-squared distribution
under the null: X = −2∑

n
i=1 ln(Pi) ∼ χ2

2n. This statistic is
used to calculate the combined p-value, which represents
how likely the individual p-values are obtained by chance.
One disadvantage of Fisher’s method is that if one of the
individual p-values approaches zero, then the combined p-
value approaches zero as well, regardless of other individual
p-values. This eventually leads to an excessive false positive
rate. Therefore, we propose to use the addition of the p-values,
rather than their product.

Denote the sum of these p-values, X = ∑
n
i=1 Pi (X ∈ [0,n]),

as the new random variable. X is known to follow the Irwin-
Hall distribution25, 26 with the following probability density
function:

f (x) =
1

(n−1)!

bxc

∑
i=0

(−1)i
(

n
i

)
(x− i)n−1 (1)

Unlike Fisher’s method, the additive method is not sensitive
to small individual p-values. However, for large values of n,
Equation (1) involves some intensive computation due to a
sum of a combinatorial and division by a factorial, the result
of which can lead to an “arithmetic underflow”, i.e. the result
can be a number smaller than what a computer can actually
store in memory.

To avoid arithmetic underflow, we change the random vari-
able from the sum of the p-values to the average of the p-
values.15 For large values of n, we replace the additive method
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Figure 1. The proposed pipeline for robust meta-analysis.

with the Central Limit Theorem (CLT). The reason for the
modification is that the additive method is accurate for small
values of n, while the Central Limit Theorem is more accu-
rate for large values of n. We select n = 20 as a conservative
cut-off. In the rest of the manuscript, we refer to this method
as addCLT.

2.2 Effect size and standard error
2.2.1 Standardized mean difference.
Similar to a commonly used fold-change, standardized mean
difference (STD) represents the difference in expression val-
ues between two groups. Since the datasets are obtained from
different platforms, the gene expression values are scaled dif-
ferently in every dataset. Therefore, it is more reasonable
to use standardized mean difference (SMD) as the metric to
measure effect sizes, rather than raw mean difference. In this
work, we use Hedge’s g27 as the metric to measure expression
change between control and disease samples.

2.2.2 Estimated effect size and p-values.
The central tendency of effect sizes for the gene can be cal-
culated either using a fixed-effects model or a random-effects
model. A fixed-effects model would assume that there is
one true effect size which underlies all of the studies in the
analysis. However, this assumption is implausible since it
cannot account for heterogeneity between studies.21, 28 In
contrast, the random-effects model allows for variability of
the true effect. For example, the effect size might be higher
(or lower) in studies where the participants are older, or have
a healthier lifestyle. The random-effects model assumes that
each effect size estimate can be decomposed into two variance
components by a two stage hierarchical process.21, 29 The first
variance represents the variability of the effect size across
studies, and the second variance represents the sampling error
within each study.

Consider one specific gene and denote y1,y2, . . . ,ym as
Hedge’s g values computed for m studies. We can write the
random-effects model as yi = µ+N(0,σ2)+N(0,σ2

εi
), where

µ is the central tendency of the effect size, N(0,σ2) repre-
sents the error term by which the effect size in the ith study
differs from the central tendency µ , and N(0,σ2

εi
) represents

the sampling error. The overall effect size µ of the gene and its
standard error σ are estimated iteratively, as described by our
references.21–23 The algorithm stops when further iteration
does not change the values of µ and σ .

After the REML algorithm stops, we compute the z-score
using the formula z = µ

σ
and then calculate the left- and right-

tailed p-values of observing such a z-score. The obtained µ

and p-values (epl and epr where ep stands for “effect size
p-value”) represent the overall expression change of the gene
and how reliable the estimated effect size is.

2.3 Leave One Out
The leave-one-out (LOO) method of analysis30 is used to
ensure that no single dataset has a disproportionate effect
on the results of the analysis. We use LOO as an intrinsic
part of our method in order to ensure that the set of genes
we ultimately reach is refined, consistent, and robust against
outliers.16 In the scope of our study, the LOO analysis consists
of n steps, where n is the number of datasets being used in
the study. Consider the datasets as being numbered, 1 to n,
and each step in the LOO analysis is numbered in the same
way. If you are on step i of the LOO analysis, you would omit
dataset i from the analysis for that iteration, then reintroduce
it in the next. In total, we conduct n+ 1 analyses: n LOO
and 1 analysis where all of the datasets are present. The n+1
outputted gene sets are intersected to obtain one final gene
set.

3/7



Table 1. The 11 datasets used in our data analysis include 7
Affymetrix and 4 sequencing (RNASeq) datasets. The three datasets
highlighted in green were used for training while the 8 datasets
highlighted in blue were used for testing.

Dataset #C #D Tissue

GSE5281 74 87 Entorhinal cortex, medial temporal gyrus, poste-
rior cingulate, superior frontal gyrus, hippocam-
pus, primary visual cortex

GSE36980 47 32 Frontal cortex, temporal cortex, and hippocam-
pus

GSE48350 173 80 Entorhinal cortex, post-central gyrus, hippocam-
pus, and superior frontal gyrus

GSE1297 9 22 Hippocampus
GSE4757 10 10 Entorhinal cortex
GSE16759 4 4 Parietal lobe
GSE39420 7 14 Posterior cingulate area
GSE53695 6 9 Drsolateral prefrontal cortex
GSE53697 6 9 Dorsolateral prefrontal cortex
GSE57152 16 8 Superior temporalis gyrus
GSE104704 16 11 Lateral temporal lobe

3 Results
Here we demonstrate the performance of the proposed method
using 11 independent studies related to Alzheimer’s disease.
Alzheimer’s disease (AD) is a neurodegenerative condition,
and is one of the most common forms of dementia. Currently,
the best method for diagnosing patients with Alzheimer’s Dis-
ease is by assessing their symptoms. This often leads to late
diagnoses, and mis-diagnoses, which reduces the potential for
effective symptom management and treatment. Our proposed
means for developing an effective early detection method is
the application of meta-analysis techniques for use in gene
expression data analysis from different regions of the brain.
Comparing the gene expression data from samples that are
diagnosed with Alzheimer’s against that of healthy samples
assists us in making informed decisions about which genes
significantly contribute to the development of AD.

Table 1 shows the details of each dataset, such as the
number of control and disease samples, tissues, and plat-
forms. The 7 microarray datasets were downloaded from the
Gene Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/). The Accession IDs of the 9 datasets are:
GSE5281,31 GSE36980, GSE48350, GSE1297, GSE4757,
GSE16759, GSE39420. Pre-processing was performed on
each dataset using the threestep function from the package
affyPLM version 1.38.0.32 The parameters used for the three-
step function are: robust multi-array analysis (RMA) back-
ground adjustment, quantile normalization, and median polish
summarization. The 7 datasets contain a total of 324 control
samples, and 249 disease samples. We also obtained 4 RNA-
Seq datasets from GEO. The accession IDs of the 4 RNA-
Seq datasets are: GSE53695, GSE53697, GSE57152, and
GSE104704. For data preprocessing, we used the salmon33

package to align raw reads and quantify transcript expression.
The expression value of a gene is calculated as the sum of
its transcripts. We also used the scater34 package to remove
outliers from each of the datasets. The 4 RNA-Seq datasets
contain a total of 44 control samples and 37 disease samples.
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Figure 2. The Receiver Operating Characteristic (ROC) curves for
each of the 8 testing datasets using six approaches: MIA, Fisher’s,
Stouffer’s, maxP, minP, and addCLT.

We divide the 11 datasets into a training set and a test-
ing set. The training set consists of 3 datasets (GSE5281,
GSE36980, GSE48350) while the testing set consists of
8 datasets (GSE1297, GSE4757, GSE16759, GSE39420,
GSE53695, GSE57152, GSE104704). Here we use six differ-
ent methods to identify the set of biomarker genes which can
be used to classify the samples in the testing datasets. The six
methods are: MIA, Fisher’s,8 Stouffer’s,9 maxP,11 minP,10

and the addCLT method.15, 35 The file classical p-value-based
methods (Fisher’s, Stouffer’s, maxP, minP, addCLT) are avail-
able in the package BLMA.36
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The pipeline of MIA is described above (see Section 2 and
Figure 1). For all methods, including MIA, we calculate the
p-values and log fold-changes using the empirical Bayesian
approach provided by the limma package.19 Since we are
interested in genes which are down-regulated as a result of
Alzheimer’s disease, we only focus on the left-sided p-values.
In addition, we narrow the analysis to only genes which are
consistently down-regulated in all 3 training datasets. We
use Fisher’s method to combine the independent p-values of
each gene. After this, each gene has a combined p-value. We
then correct the p-values using False Discovery Rate (FDR).24

Finally we define the biomarker genes as the genes that are
consistently down-regulated in every single training dataset
and have an FDR-adjusted p-value smaller than 1%. This
defines the set of biomarker genes for Fisher’s method. In
addition to Fisher’s method, we also used 4 other methods
to combine p-values: Stouffer’s,9 maxP,11 minP,10 and the
addCLT method. These 5 approaches only differ in the way
that the p-values are combined.

Each of the six methods identified a set of biomarker genes.
MIA identified 31 impacted genes while Fisher’s, Stouffer’s,
maxP, minP, and addCLT identified 4406, 4394, 745, 4282,
and 3511, respectively. In the next step, we used each of these
sets to classify the samples of the 8 testing datasets. For each
of the datasets in the testing set, we calculated the median
expression of the given biomarker genes for each sample and
then use that median value to classify the samples.

Figure 2 shows the Receiver Operating Characteristic
(ROC) curves using six different meta-analysis approaches.
In each panel, the horizontal axis represents the False Positive
Rate (FPR) and the vertical axis represents the True Posi-
tive Rate (TPR). Since the identified biomarkers are down-
regulated genes, a sample which has a computed metric lower
than the threshold would be considered as being positive (a
disease sample). For each dataset, we first set the threshold
below the range of expression values to get zero positives –
0% TPR, and 0% FPR. We then gradually increase the thresh-
old to get more positives. Simultaneously, the TPR and FPR
also increase. When the threshold is set high enough, all of
the samples become negatives. With this, TPR and FPR reach
100%. Overall, the ROC curves for MIA are above the ROC
curves of other methods, indicating that MIA has higher TPR
and lower FPR compared to other methods.

For an ideal classification, there is a threshold where all
of the samples are correctly classified, with 100% TPR and
0%FPR. At this threshold, the ROC curve jumps from [0,0]
to [0,1], making the area under the curve (AUC) to be 1. In
principle, the AUC values are used to access the performance
of the classification methods. The box-plot of the AUC values
is shown in Figure 3, and the values for each dataset are shown
in table 2. For each row, cells highlighted in green have the
highest AUC value. For six out of eight datasets tested, MIA
outperforms other methods by having the highest AUC values.
In addition, the mean and median AUC values obtained by
MIA are higher than those obtained by the five other methods.
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Figure 3. Box-plot of AUC values obtained from 8 datasets using
six different methods. The AUC values obtained from MIA are
higher than those obtained from other methods.

Table 2. AUC values obtained from 8 testing datasets using 6
different methods: MIA, Fisher’s, Stouffer’s, maxP, minP, and the
addCLT method. Cells highlighted in green have the highest AUC
value for the corresponding dataset. For 6 out of 8 datasets tested,
MIA have higher AUC values than the rest. MIA also has the
highest mean and median AUC values.

Dataset MIA Fisher Stouffer maxP minP addCLT

GSE1297 0.803 0.729 0.727 0.757 0.727 0.727
GSE4757 0.540 0.600 0.605 0.580 0.610 0.610
GSE16759 0.812 0.562 0.562 0.593 0.562 0.562
GSE39420 0.852 0.846 0.846 0.841 0.846 0.846
GSE53695 0.888 0.833 0.833 0.842 0.833 0.833
GSE53697 0.638 0.601 0.611 0.694 0.601 0.620
GSE57152 0.609 0.460 0.496 0.398 0.468 0.476
GSE104704 0.948 0.806 0.806 0.840 0.833 0.833
Mean 0.762 0.680 0.686 0.694 0.682 0.686
Median 0.808 0.666 0.669 0.726 0.669 0.674

Overall, the median AUC value for MIA is 0.81.This indi-
cates that the genes obtained from the proposed approach are
important in identifying patients with Alzheimer’s disease.

4 Conclusions and Discussion
In this paper we present a meta-analysis method called MIA
to identify a set of genes that can be used to classify individual
samples as disease or control. We utilized techniques from
both p-value-based and effect-size-based meta-analyses to
obtain a robust biomarker. The obtained genes are significant
from a classical hypothesis testing perspective, as well as have
the effect sizes that are outside the bounds of standard error.

We validated our method using 11 independent Alzheimer’s
datasets obtained from different research laboratories with sig-
nificantly different high-throughput platforms. The proposed
approach was compared against five classical meta-analysis
approaches. Our approach identified a tight set of genes (31)
while other methods identified relatively large biomarker sets
with thousands of differentially expressed genes. MIA out-
performs existing approaches by having the highest median
and mean AUC values. The identified biomarkers are able
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to accurately distinguish Alzheimer’s patients from healthy
controls.

MIA implements several tried and true statistical modeling
methods and algorithms in conjunction with one another to
produce it’s outcome. Each step provides its own unique
contribution to the final result, and serves a particular purpose.
For instance, we chose the REML algorithm in place of other
effect-size combination methods because of its affinity toward
modeling real-world data. We expect that the applications
of MIA are to be generally geared toward drawing inference
from datasets which come from significantly different sources,
which therefore enables it to benefit from the flexibility of
algorithms such as REML. We also chose to implement the
LOO strategy, specifically to reduce the likelihood of false
positives, which is nearly ubiquitous across modern meta-
analysis techniques. The power of MIA is rooted in how it
integrates multiple techniques in such a way that the strengths
of each mitigate the shortcomings of others.
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