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ABSTRACT

Metagenomics is the study of genomic content of microor-
ganisms from environmental samples without isolation and
cultivation. Recently developed next generation sequenc-
ing (NGS) technologies efficiently generate vast amounts
of metagenomic DNA sequences. However, the ultra-high
throughput and short read lengths make the separation of
reads from different species more challenging. Among the
existing computational tools for NGS data, there are super-
vised methods that use reference databases to classify reads
and unsupervised methods that use oligonucleotide patterns
to cluster reads. The former may leave a large fraction of
reads unclassified due to the absence of closely related refer-
ences. The latter often rely on long oligonucleotide frequen-
cies and are sensitive to species abundance levels. In this
work, we present MarkovBin, a new unsupervised method
that can accurately cluster metagenomic reads across vari-
ous species abundance ratios. We first model the nucleotide
sequences as a fixed-order Markov chain. We then propose a
hierarchical distribution to model the dependency between
paired-end reads. Finally, we employ the mixture model
framework to separate reads from different genomes in a
metagenomic dataset. Using extensive simulation data, we
demonstrate a high accuracy and precision by comparing
to selected unsupervised read clustering tools. The soft-
ware is freely available at http://orleans.cs.wayne.edu/
MarkovBin.
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1. INTRODUCTION

Since up to 99% of bacteria cannot be cultivated and thus
are uncharacterized [1, 2] , metagenomics [3, 4] offers a huge
advantage over the traditional methods of studying individ-
ual genomes, which rely on species isolation and cultiva-
tion. Successful projects have provided deeper insights into
the microbial world by sequencing DNA material of micro-
bial samples in their natural habitats, such as soil [5], acid
drainage from an abandoned mine [6], sea water [7], and mi-
crobial communities of the human body [8, 9, 10]. Metage-
nomics opens up opportunities to uncover the diversity of
the microbial worlds, their evolution, and their impacts on
the environment and human health.

Sequencing technologies have rapidly evolved and have gen-
erated vast amounts of metagenomic data over the past few
years. Compared to Sanger sequencing technology, the NGS
technologies, such as Roche/454 [11] and Illumina/Solexa [12],
have been greatly parallelized to produce millions to billions
of reads with faster speed and lower cost, allowing for much
greater sequencing depth. However, reads obtained from the
NGS platforms are often very short. For example, Illumina
generates reads with lengths 50-150 compared to 700-1000
bps in Sanger reads. Both the ultra high-throughput and the
significantly shorter read lengths present serious challenges
in metagenomic analysis.

One of the main goals of metagenomics is to identify the pop-
ulations of microorganisms and the roles of individual mi-
crobes in their communities. There have been efforts to re-
construct the genomic sequences of all organisms in the sam-
ple using assembly tools. However, this task is complicated
due to several factors. First, the number of species and their
relative abundances are unknown and change from sample
to sample. Second, sequencing data are usually fragmented
and partial since environmental sequence sampling rarely
produces all the sequences required for assembly. Finally,
in addition to repetitive regions within individual genomes,
genomes of closely related species may share homologous se-
quences, which lead into very complex repetitive patterns.
Consequently, assembly of metagenomic sequences is gener-
ally very challenging [13, 14, 15]. For this reason, grouping
reads into more homogenous sets of reads has become an
important step in metagenomic analysis.

There are currently two classes of computational methods to

separate metagenomic reads: supervised and unsupervised.
In general, the supervised methods compare the sequenc-
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ing reads against known references in the databases, such as
known genomic sequences, genes, or proteins. Earlier meth-
ods often use taxonomic markers, e.g., 16S rRNA, rpoB, and
recA, to assign reads into different groups [16, 17, 18, 19].
These methods are not applicable to the whole genome scale
since only a single gene is used for read classification. More
recent methods often align reads to known reference genomes
or protein families and then assign reads to taxa [20, 21, 22,
23, 24]. Since most of the microbes found in the environment
are uncharacterized, these methods may discard or misclas-
sify a large fraction of reads due to the absence of closely
related references.

In contrast to supervised methods, the unsupervised meth-
ods usually cluster reads from different species using DNA
composition information. Pioneering unsupervised methods
for Sanger reads of length 700-1000 bps are based on the fact
that some composition properties, such as GC content and
frequencies of short g-tuples are preserved across the same
genome and varies greatly between different genomes [25, 26,
27]. Methods in this class include TETRA [26, 28], Com-
postBin [29], TACOA [30], LikelyBin [31], SCIMM ([32], and
MetaCluster 3.0 [33]. Since some DNA composition proper-
ties are preserved only in long fragments, the performance
of these methods is influenced greatly by the length of the
reads. The above tools were tested only on datasets with
read length 700-1000 bps, for which they achieve reasonable
performance.

AbundanceBin [34] is one of the first unsupervised meth-
ods to cluster NGS reads based on the frequencies of I-
tuples (I is around 20). AbundanceBin assumes that the
frequencies of these [-tuples, with an appropriate value of
l, are linearly proportional to the genomic coverage. Con-
sequently, the frequencies of [-tuples from multiple species
are assumed to come from a mixture of Poisson distribu-
tions [35]. AbundanceBin estimates the Poisson parameters
via the Expectation-Maximization (EM) algorithm and then
clusters the metagenomic reads based on the frequencies of
their [-tuples. The main limitation of AbundanceBin is that
it cannot separate reads from species having similar abun-
dance. Moreover, choosing the length of I-tuples is also a
challenging task [35].

MetaCluster 4.0 [36] and MetaCluster 5.0 [37] are two re-
cently developed unsupervised tools that can efficiently sep-
arate NGS reads from species having similar abundances.
MetaCluster 4.0 consists of three steps. In step 1, it groups
reads based on some longer w-tuples (w > 35) that are as-
sumed to be unique for each genome. In step 2, it associates
each read with a feature vector built from frequencies of
short 4-tuples. It then applies the k-means algorithm to
further divide the groups formed in step 1. In step 3, it
merges the some of the groups based on the inner-cluster
similarity. MetaCluster 4.0 was shown to perform well for
species with similar abundances. However, the performance
declines when the abundance levels of the species differ by
large margins. In addition, the greedy k-means algorithm
does not give a globally optimal solution, i.e., each execution
of MetaCluster 4.0 might give a different clustering result.

Since MetaCluster 4.0 performs better when the abundance
levels in a sample are more even, MetaCluster 5.0 [37] fur-
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ther refines the method by filtering reads from low abun-
dance species. It first counts the frequencies of I-tuples and
then filters reads with all I-tuples appearing at most T" time
(T is a pre-defined threshold). The goal of this filtering
step is to separate reads into two groups: reads from low
abundance species and reads from high abundance species.
The two groups of reads are then clustered independently,
resulting in a greatly improved performance. However, the
initialization problem of the k-means algorithm and the task
of choosing the length of I-tuples are still not thoroughly ad-
dressed. In addition, the accuracy of the method still relies
on the evenness of the species abundances as we will demon-
strate in the experimental results.

Here we present MarkovBin, a new clustering algorithm that
can reliably cluster metagenomics short reads across vari-
ous species abundance levels. The fundamental assumption
of our method is that nucleotide sequences sampled from a
genome follow a Markov model as has been used in many
other methods [23, 27, 31, 32, 38, 39, 40]. For single-end
reads, we use a Markov chain to model the nucleotide se-
quences within each cluster. For paired-end reads, we pro-
pose a hierarchical model to efficiently exploit the paired-end
information, taking into account the fragment length distri-
bution. Finally, we apply the EM algorithm to estimate
the Markov parameters and relative species abundance. Us-
ing the estimated parameters, we assign each read to the
cluster with the highest probability among all clusters. Via
extensive simulation experiments, MarkovBin demonstrates
high accuracy and precision regardless of species abundance
levels.

2. METHODS

The GC content of bacterial genomes has been playing an
important role for phylogenetic classification [41, 38]. The
GC content can be conceptualized as zero-order Markov
chains, in which the probability of observing a nucleotide
does not depend on its preceding nucleotides. Higher or-
der Markov chains have been successfully applied to cap-
ture genome signatures by modeling the distribution of nu-
cleotide sequences [23, 27, 31, 32, 38, 39, 40]. In this section,
we recapture the fixed-order Markov chains and then em-
ploy the mixture model to cluster metagenomic NGS reads
by their species of origin.

2.1 Markov Models
2.1.1 Fixed-order Markov Chains

Given a set of DNA sequences sampled from a genome, we
want to model the probability of occurrence of each se-
quence. We define a DNA sequence S of length w as a
sequence of discrete variables Y1, Y2 ...,Y, on the alphabet
A ={A,T,C,G}. For any probabilistic model of sequences,
the probability of S can be calculated as follows:

P(S) = P(W1Ya...Y)
= P(Y1Ys ... Yu_1)P(Yu|ViYs ... Yu_1)
= P(Y1)P(Ya|Y1) ... P(Yu|Y1Ya ... Yu_1)

The key assumption of an m'" order Markov chain is that
the distribution of any element Y; in the sequence depends
only on its m preceding elements (Figure 1). with this as-
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Figure 1: A second-order Markov chain. In this
example, the probability of observing a nucleotide
only depends only on its two preceding nucleotides.

sumption, the probability of S can be written as follows:

w

YY) [ PG

i=m-+1

YY) (1)

Let us denote the parameter set of an m‘"® order Markov

model as (9, ®), for which the transition probabilities are
defined by ® : A™ x A — [0,1] and the distribution of m-
tuples is defined by ¢ : A™ — [0,1]. The function ® can
be written using a transition probability matrix (TPM) of
4™ rows where each row has 4 possible transitions. Given
the model (9, ®), we can compute the probability of S =
Y1Ys2... Y, as the product of the probability of the starting
m-tuple and the transition probabilities as follows:

!
I 2®vim..

t=m+1

P(S|9,®) =9(Y; ..., YY) (2)

2.1.2  Maximum Likelihood Estimators

Consider a set of n sequences S = {51, S2,...,S,} indepen-
dently generated by an m'™ order Markov model (9, ®). The
log likelihood of observing such data is given as:

= log P(Si[0, ®) (3)

1=1

log L(9, ®|S)

where P(S;|¢, ®) can be calculated as in (2). The maximum
likelihood estimators (MLE) can be obtained as an appro-
priate root of the derivatives with respect to ¢ and & [42].
Solving the optimization problem yields the following max-
imum likelihood estimators:

N(thm . thl)
n(l —m+1)

N(Ct_m e ct_lct)
N(thm . thl)

where N(¢i—m,...ct—1) is the count of the (m + 1)-tuple
Ctem - Ct—1 IN S, Ct—m,...Ct—1 1S the count of the m-tuple
Ct—m ...Cct—1 in S, and n(l —m + 1) is the total number of
all m-tuple in S. These MLE will be used in the M step of
the EM algorithm in section 2.3.

19(Ct_m e Ct—l) =

(4)

D(Ctmm ... .Ct_150) =

2.2 Hierarchical Distributions

Sequencing technologies can generate a pair of short reads
from both sides of a DNA fragment. Due to advanced size se-
lection procedures, the distribution of the fragment lengths
is approximately known. Using this information, we can
extend the Markov models to calculate the distribution of
paired-end data by modeling the dependency between a pair
of short reads. Denoting X as the random variable corre-
sponding to the fragment length of paired-end reads, w as
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w w

Figure 2: A paired-end read consisting of two short
reads of length w.

the length of short reads (Figure 2), the probability of oc-
currence of a paired-end read S = (S*, S?) can be calculated

as follows:
P(S) =Y P(S', S?IX)P(X)
= > P(S",$?1X)P( +Z (8%, 5% X)P(X)

When the two short reads are separated by a gap (X > 2w),
the probability of occurrence of each nucleotide sequence can
be treated as independent. Consequently, the first term of
the above formula can be written as:

> P(SLSIX)P(X) = Y P(S'X)P(S*|X)P(X)
= > P(SHP(S*)P(X)

= P(S")P(S*)P(X > 2w)

When the two short reads overlap (X < 2w) and form a con-
tiguous sequence Sx (|Sx = X|), we have P(S', 5% X) =
P(Sx). Consequently, the probability of occurrence of the
paired-end reads S can be calculated as follows:

2w

P(S) = P(S")P(S*)P(X > 2w) + > P(Sx)P(X) (5)

X=w

where P(S'), P(S?), P(Sx) can be calculated according to
the Markov model and P(X) is given from the fragment
length distribution.

The above formula requires end-users to provide the distri-
bution of the fragment length, which may cause difficulties in
practice. Here we develop some approximation formulas to
calculate P(S) when the fragment length distribution is not
available. When the average fragment length is much larger
than twice of the read length, the second term of (5) is neg-
ligible and P(X > 2w) = 1. Consequently, the probability
of occurrence of the paired-end read can be approximated
as P(S) = P(S")P(S?). When the average fragment length
is close to or smaller than twice of the read length, we can
look for overlap between the two short reads. If they over-
lap, we can merge them into a single sequence Sx and then
approximate P(S) as P(S) =~ P(Sx). Otherwise, we can
approximate P(S) as P(S) ~ P(S')P(S?).

2.3 Mixture Modeling for Cluster Analysis

In this section, we first apply the EM algorithm to cluster
single-end reads using a mixture of Markov models [43, 44].
We then extend the framework to cluster paired-end reads
using a mixture of hierarchical models. The workflow of the
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g: cluster number
S ={51,55, ..., S,}, single-end
or paired-end reads

i

Initialize ¥ using GC content of the reads.

w©® = (x?,90, P 1j e[1.. g}

k=0

/Step Calculate r(kH), expected values of the \
unobserved data Zu where Z;; = 1ifS; belong to

group G;
e
Q(w|¥®) = Z Z < log 1 + log P(Si19, )
\_ o = B(zyls ) W,
M-Step: Recalculate ¥ **+1), the updated
parameters that maximize Q (¥ |¥ ).
pl+D) — grgmax Q| ¥y
b4
k=k+1

Check if the EM

converges
pk+1) o wk) 9

Assign reads to g clusters Gy, G5, ..., G

g

Vie [1..n),t € [1..g]:S; € G;

&t =argmax P(Z;; = 1|S,¥)
j

Figure
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A 4

End

3: The workflow of MarkovBin.

MarkovBin is depicted in Figure 3, which will be described
in details in the following sections.

2.3.1 Mixture of Markov Models

Consider a set of n sequences S = {Si,Sa2,...,Sn} that
were sequenced from a sample of g species. In the mixture
model, it is assumed that the data are from a mixture of
g clusters with various proportions. Denoting (9;, ®;) and
m; as the Markov parameters and the proportion of the gth
cluster (j € [1..g]), we have the following set of unknown
parameters ¥ = (¢1, P1, 71, ..., Y4, Pg,mg). The goal of the
algorithm is to estimate this set of parameters and then
assign each read to the cluster with the highest probability.

The EM algorithm [45] is applied in the framework where
each sequence S; (¢ € [1..n]) is considered to be observed and
the indicator vector z; denoting its source origin is consid-
ered to be missing. Each sequence S; is associated with
an unobserved indicator vector z; = [z¢17...,zig}7 where
zij = 1if S; is from the j”" cluster and z;; = 0 otherwise
(i € [1.n],7 € [l..g]). The probability of a complete data
point (S;,z;) is given by:

g
P(Si,2i]0) = > ziym; P(Si[9;, ;) (6)
j=1
where the probability P(S;|9;, ®;) can be calculated as de-
scribed in (2). With the assumption that the sequences in &
were independently generated from the mixture model, the
complete data log likelihood log L.(¥) is given by:

n g
log L.(¥) = log( HZz”ﬂ'] (S:]95, ®;5))
1=1j=1
g

= log(D | ziym; P(Sil 5, ®;))
i=1 =1

In the above formula, z; is an indicator vector, i.e., z;; equals
1 only for one specific value of j and z;; equals 0 for the rest.
For that reason, we have the following equation:

g g
log(D 2w P(Sil 0, ®;)) = > 25 log(m; P(Sild, @)

j=1 j=1

which leads to the following form of the complete data log
likelihood:

n

log L.(¥) = ZZzi]-{logﬁj +log P(Si|9;,®5)}  (7)

i=1 j=1

The EM algorithm starts by an initialization of the un-
known parameters and then iteratively recalculate them.
Denoting the parameter set after k iterations as W) =
W, e £F 9l &) 7)) the E step of the (k +
1)*" iteration calculates the conditional expectation of the
complete data log likelihood given the observe data and the
current values W) of W. Denoting Z; as the random vari-
able corresponding to z;; and E(Zi;|S, ¥*)) as their expec-
tation using the current value U of ¥, the Q function is
given by:

Q(u|w™)) ZZ 5D Nog m; + log P(Si]95, ®,)} (8)

=1 j=1
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(k+1)

where Tij can be calculated as follows:

Y = B(Zi;18,9™®)
= P(Zi; = 1|5, ¥™)
_ mPPsio, )
S mPPsi, o)

(9)

The M step of the (k+1)*" iteration requires the maximiza-
tion of the @ function with respect to ¥ over the parameter
space to give the updated estimate U**Y . The updated
estimate of the j" proportion m; is given by:
(o) T
+1) _ )
mY =y (10)
i=1

Using the maximum likelihood estimators in (4), the tran-
sition probabilities of the Markov models are given by the
following equations:

k1
9 (¢ Ct—1) = N; (erom, o)
J tmmy - Gl n(l—m+1)
N(k“) Ct—my...C
@gkﬂ)(ct,m,...ct,l;ct) = J (et 2

N(’H—l)(ct,m, e Cio1) (11)
Z <k+1)N Ct—m7~~-ct)

>IN (Crmm, - ein)

i

N](k+1) (Ct—ma

N;IH_U(Ct_m, e Ct_1) =

The EM algorithm recalculate the parameters until they do
not change over the new iteration. After the EM algorithm
converges, we estimate the probability that a read S; belongs
to a cluster G; as follows:

P(Si];, 5)
Zt 17TtP(S "Lgt,(bt)

Using (12), we assign each read to the cluster with the high-
est probability among all clusters. To increase the confi-
dence level, we can set a cutoff to remove ambiguity. If the
maximum value is distinctively higher than the rest, we can
confidently assign the read into the corresponding cluster,
otherwise we can just discard the read. By default, the fil-
tering cutoff is not set, i.e., no read is discarded.

P(Zi; =1|8,¥) = (12)

2.3.2  Mixture of Hierarchical Models

Consider a sample S = {(S1,5%),(53,53),...,(Sk,S2)} of
n paired-end reads originated from g clusters of different
hierarchical models. We can follow the same workflow as
explained in section 2.3.1 using the new forms of the com-
plete log likelihood and the @ function:

n g
=> > zi{logm; +log P(S{, SP[9;,®;)}

log L.(¥)
i=1 j=1
Q(w|w™)) ZZ S logm; + log P(S}, S710;, @)}
=1 j=1
sy ___my P(SE s, o)
v ftJ 17T(k)P(Sl 52‘19(16) (I)(k))

where P(S}, Sf|19§.k)) can be calculated using (5).
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Species Abundances of the Simulated Data
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Figure 4: Species abundances of the simulated data.
The horizontal axis displays names of the 5 datasets
whereas the vertical axis displays the number of
reads from each species. Each dataset consists of
10 million paired-end reads with length 100.

2.3.3 Initial Values for the Mixture Model

The choice of initial values is essential for our algorithm
because of the tendency for there to exist many local max-
ima of the likelihood function. One typical solution is to
run the algorithm multiple times with random initial values
and then choose the best clustering result according to the
complete log likelihood. However, due to the large number
of parameters, this approach has raised concerns about the
repeatability and the computational demand.

To avoid exploring the vast parameter space, we have de-
veloped a new procedure to initialize the Markov models
using GC content. We first count the number of G and C
nucleotides in each read. We then sort the reads accord-
ing to their G and C counts before evenly dividing them
into g clusters. Using the reads falling into each cluster, we
calculate the initial values for the mixture model.

3. SIMULATION EXPERIMENTS

We used MetaSim [46], an open source software package, to
generate 5 datasets with various abundances from 4 differ-
ent species: “Acidithiobacillus ferrooxidans ATCC 232707,
“Candidatus Korarchaeum cryptofilum OPF8 chromosome”,

Table 1: Running time of MarkovBin, Abundance-
Bin, and MetaCluster (in minutes).

Datasets | MarkovBin | AbundanceBin | MetaCluster
1 625 376 112
2 195 263 55
3 173 319 69
4 193 226 56
5 237 262 56
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MarkovBin Results (Dataset 1)

AbundanceBin Results (Dataset 1)

MetaCluster Results (Dataset 1)
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N Elusimicrobium minutum Pei191 X Elusimicrobium minutum Pei191 N Elusimicrobium minutum Pei191
85 Hydrogenobaculum sp. YO4AAS1 85 Hydrogenobaculum sp. YO4AAS1 s_| | B Hydrogenobaculum sp. YO4AAS1
2]
= = = B
© = Z = = H
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31 = = = =
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= = = =
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Figure 5: Clustering results of MarkovBin (left panels), AbundanceBin (middle panels), and MetaCluster
(right panels) using simulated data. The horizontal axes display the clusters whereas the vertical axes display
the read numbers from different species classified into each cluster. The last cluster in each panel displays
the number of unclassified reads.
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Table 2: The accuracy, precision, and adjusted Rand index of MarkovBin, AbundanceBin, and MetaCluster.

MarkovBin AbundanceBin MetaCluster
Datasets | Accuracy | Precision | ARI | Accuracy | Precision | ARI | Accuracy | Precision | ARI
1 0.94 0.97 0.91 0.99 0.99 0.98 0.60 0.96 0.56
2 0.91 0.97 0.89 0.78 0.49 0.20 0.77 0.97 0.78
3 0.91 0.96 0.88 1 0.21 0.13 0.58 0.93 0.55
4 0.91 0.97 0.89 1 0 0 0.77 0.97 0.78
5 0.90 0.97 0.89 0.99 0.61 0.51 0.65 0.97 0.66

“Elusimicrobium minutum Peil91”, and “Hydrogenobaculum
sp. Y04AAS1”. The GC content of the species are 58%,
55%, 51%, and 35%, respectively. Each dataset consists of
10 million paired-end reads with length 100. The species
abundances are displayed in Figure 4.

We compare the performance of MarkovBin with Abun-
danceBin (version 1.01, February 2013) and MetaCluster
(version 5.0, May 2012), which are 2 of the latest unsu-
pervised binning tools for NGS short reads. For all the 3
methods, we set the the number of species and the read
length set to 4 and 100, respectively. For MarkovBin, we set
the Markov order to 1. Table 1 shows the time complexity
of the competing tools on the same server (4 x Twelve-Core
AMD Opteron 2.6GHz, 256GB RAM). For all the 5 data
sets, MetaCluster runs much faster than AbundanceBin and
MarkovBin. Interestingly, the running time of all the three
methods increases significantly for the first dataset, which
indicates a slow conversion when species abundances differ
by large margins. Overall, all the three clustering methods
are reasonably fast and can cluster 10 million paired-end
reads in several hours.

We proceed to compare the performance of the clustering
methods. Each tool outputs 4 clusters of reads and a set
of unclassified reads (discarded reads). We treat the set
of unclassified reads as the 5" cluster. For MetaCluster
5.0, we did not proceed to the second round (MetaClus-
ter5_2) to further cluster the unclassified reads because the
number of clusters already exceeds the number of species.
In Figure 5, the left panels show the clustering results of
MarkovBin whereas the middle panels and right panels show
the clustering results of AbundanceBin and MetaCluster. In
each panel, the horizontal axis displays the cluster names
whereas the vertical axis displays the read number of each
species falling into each cluster. The last clusters in the
panels consist of the reads that were discarded. In gen-
eral, MarkovBin and MetaCluster perform consistently well
regardless of species abundance with the difference is that
MetaCluster discards a large fraction of reads. On the other
hand, AbundanceBin gives a good result only when the
species have very different relative abundances.

To give more comprehensive comparisons, we also calculate
the accuracy and precision of the competing methods. We
consider a pair of reads to be positive if they belong to the
same species. Likewise, we consider a pair of reads to be
negative if they belong to different species. Let us denote
Np as the total number of the positive pairs, Ny as the
total number or the negative pairs, Nrp (true positive) as
the number of positive pairs that were assigned to the same
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cluster, Nty (true negative) as the number of negative pairs
that were assigned to different clusters. We define the accu-
racy as NNLPP and the precision as % The accuracy and
precision of each method are shown in Table 2. To access
the overall performance, we also report the adjusted Rand
index (ARI) [47], which is the corrected-for-chance version

of the Rand index [48].

In general, AbundanceBin achieves high accuracy as it usu-
ally groups reads of the same species together but cannot
separate reads from species having similar genomic cover-
age, resulting in a fluctuating precision. MetaCluster offers
high precision across different abundance ratios since it relies
on the composition properties, i.e., long w-tuples (w > 35)
and short 4-tuples, to separate the reads. However, its per-
formance relies on the evenness of the species abundance
in the sample. To make the species abundance more even,
MetaCluster discarded a lot of reads in the filtering step.

Compared to AbundanceBin and MetaCluster, MarkovBin
has a more stable performance since it consistently yields
high accuracy (> 0.9) and precision (> 0.96) for all of the 5
simulated datasets. There are three possible reasons for this.
First, the GC content generally captures the genome signa-
tures and thus provides good initial values for the EM algo-
rithm. Second, our model is not affected by species abun-
dance since it relies only on genomic composition. Finally,
the hierarchical model efficiently exploits the paired-end in-
formation. It connects the two nucleotides sequences of any
paired-end read together, resulting in a more stable feature
extraction.

4. CONCLUSIONS

In this paper, we have presented MarkovBin, a new algo-
rithm to cluster metagenomic NGS reads. The mixture
model based algorithm is expected to give better cluster-
ing performance over the k-means algorithm whereas the
hierarchical model allows for formulating the paired-end in-
formation. We also provided a robust initialization using
GC content. We evaluated and compared the performance
of MarkovBin with selected tools using multiple simulated
datasets. Overall, MarkovBin consistently achieves high pre-
cision and accuracy across various species abundance ratios.

For future work, we hope to develop a framework to combine
different complementary features for a better clustering. Ex-
isting approaches, including AbundanceBin and MetaClus-
ter, have provided very different features, which may play
critical roles for separating reads under some specific con-
ditions. We also hope to extend our method to automati-
cally determine the number of species via some information
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criteria, such as Akaike information criterion (AIC) [49] or
Bayesian information criterion (BIC) [50]. Finally, we hope
to assess the potential of our method by applying MarkovBin
on real metagenomic samples with high species diversity to
gain insights into complex microbial communities.

S.
[

2]

[10]

[11]

[12]

[13]

REFERENCES
M. S. Rappé and S. J. Giovannoni. The uncultured

microbial majority. Annual Reviews in Microbiology,
57(1):369-394, 2003.

J. A. Eisen. Environmental shotgun sequencing: its
potential and challenges for studying the hidden world
of microbes. PLoS biology, 5(3):e82, 2007.

J. Handelsman, M. R. Rondon, S. F. Brady, J. Clardy,
and R. M. Goodman. Molecular biological access to
the chemistry of unknown soil microbes: a new
frontier for natural products. Chemistry & Biology,
5(10):R245-R249, 1998.

K. Chen and L. Pachter. Bioinformatics for
whole-genome shotgun sequencing of microbial
communities. PLoS computational biology, 1(2):e24,
2005.

S. Leininger, T. Urich, M. Schloter, L. Schwark, J. Qi,
G. Nicol, J. Prosser, S. Schuster, and C. Schleper.
Archaea predominate among ammonia-oxidizing
prokaryotes in soils. Nature, 442(7104):806-809, 2006.
G. W. Tyson, J. Chapman, P. Hugenholtz, E. E.
Allen, R. J. Ram, P. M. Richardson, V. V. Solovyev,
E. M. Rubin, D. S. Rokhsar, and J. F. Banfield.
Community structure and metabolism through
reconstruction of microbial genomes from the
environment. Nature, 428(6978):37-43, 2004.

S. Yooseph, G. Sutton, D. B. Rusch, A. L. Halpern,
S. J. Williamson, K. Remington, J. A. Eisen, K. B.
Heidelberg, G. Manning, W. Li, et al. The sorcerer ii
global ocean sampling expedition: expanding the
universe of protein families. PLoS biology, 5(3):e16,
2007.

E. K. Costello, C. L. Lauber, M. Hamady, N. Fierer,
J. I. Gordon, and R. Knight. Bacterial community
variation in human body habitats across space and
time. Science, 326(5960):1694-1697, 2009.

E. A. Grice, H. H. Kong, S. Conlan, C. B. Deming,
J. Davis, A. C. Young, G. G. Bouffard, R. W.
Blakesley, P. R. Murray, E. D. Green, et al.
Topographical and temporal diversity of the human
skin microbiome. science, 324(5931):1190-1192, 2009.
J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf,
C. Manichanh, T. Nielsen, N. Pons, F. Levenez,

T. Yamada, et al. A human gut microbial gene
catalogue established by metagenomic sequencing.
Nature, 464(7285):59-65, 2010.

M. Margulies, M. Egholm, W. E. Altman, S. Attiya,
J. S. Bader, L. A. Bemben, J. Berka, M. S.
Braverman, Y.-J. Chen, Z. Chen, et al. Genome
sequencing in microfabricated high-density picolitre
reactors. Nature, 437(7057):376-380, 2005.

D. R. Bentley. Whole-genome re-sequencing. Current
opinion in genetics & development, 16(6):545-552,
2006.

M. Pop. Genome assembly reborn: recent
computational challenges. Briefings in bioinformatics,

ACM-BCB 2013

(14]

(15]

(16]

(17]

18]

(19]

24]

[25]

[26]

10(4):354-366, 20009.

A. Charuvaka and H. Rangwala. Evaluation of short
read metagenomic assembly. BMC' genomics, 12(Suppl
2):S8, 2011.

H. Teeling and F. O. Glockner. Current opportunities
and challenges in microbial metagenome analysisﬁa
bioinformatic perspective. Briefings in bioinformatics,
13(6):728-742, 2012.

D. J. Lane, B. Pace, G. J. Olsen, D. A. Stahl, M. L.
Sogin, and N. R. Pace. Rapid determination of 16s
ribosomal rna sequences for phylogenetic analyses.
Proceedings of the National Academy of Sciences,
82(20):6955-6959, 1985.

J. Cole, B. Chai, R. Farris, Q. Wang, S. Kulam,

D. McGarrell, G. Garrity, and J. Tiedje. The
ribosomal database project (rdp-ii): sequences and
tools for high-throughput rrna analysis. Nucleic Acids
Research, 33(suppl 1):D294-D296, 2005.

S. Chakravorty, D. Helb, M. Burday, N. Connell, and
D. Alland. A detailed analysis of 16s ribosomal rna
gene segments for the diagnosis of pathogenic bacteria.
Journal of microbiological methods, 69(2):330-339,
2007.

R. J. Case, Y. Boucher, I. Dahllof, C. Holmstrom,

W. F. Doolittle, and S. Kjelleberg. Use of 16s rrna and
rpob genes as molecular markers for microbial ecology
studies. Applied and environmental microbiology,
73(1):278-288, 2007.

A. C. McHardy, H. G. Martin, A. Tsirigos,

P. Hugenholtz, and I. Rigoutsos. Accurate
phylogenetic classification of variable-length dna
fragments. Nature methods, 4(1):63-72, 2006.

D. H. Huson, A. F. Auch, J. Qi, and S. C. Schuster.
Megan analysis of metagenomic data. Genome Res.,
17(3):377-386, 2007.

M. Wu and J. A. Eisen. A simple, fast, and accurate
method of phylogenomic inference. Genome Biology,
9(10):R151, 2008.

A. Brady and S. L. Salzberg. Phymm and PhymmBL:
metagenomic phylogenetic classification with
interpolated Markov models. Nature methods,
6(9):673-676, 2009.

J. C. Clemente, J. Jansson, and G. Valiente. Flexible
taxonomic assignment of ambiguous sequencing reads.
BMC bioinformatics, 12(1):8, 2011.

T. Abe, S. Kanaya, M. Kinouchi, Y. Ichiba, T. Kozuki,
and T. Ikemura. Informatics for unveiling hidden
genome signatures. Genome Res., 13(4):693-702, 2003.
H. Teeling, A. Meyerdierks, M. Bauer, R. Amann, and
F. O. Glockner. Application of tetranucleotide
frequencies for the assignment of genomic fragments.
Environmental Microbiology, 6(9):938-947, 2004.

J. Bohlin, E. Skjerve, and D. W. Ussery.
Investigations of oligonucleotide usage variance within
and between prokaryotes. PLoS computational biology,
4(4):e1000057, 2008.

H. Teeling, J. Waldmann, T. Lombardot, M. Bauer,
and F. O. Glockner. TETRA: a web-service and a
stand-alone program for the analysis and comparison
of tetranucleotide usage patterns in DNA sequences.
BMC Bioinformatics, 5(1):163, 2004.

122



[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

S. Chatterji, I. Yamazaki, Z. Bai, and J. A. Eisen.
CompostBin: A DNA composition-based algorithm for
binning environmental shotgun reads. In Research in
Computational Molecular Biology, pages 17—-28.
Springer, 2008.

N. N. Diaz, L. Krause, A. Goesmann, K. Niehaus, and
T. W. Nattkemper. TACOA-Taxonomic classification
of environmental genomic fragments using a kernelized
nearest neighbor approach. BMC bioinformatics,
10(1):56, 2009.

A. Kislyuk, S. Bhatnagar, J. Dushoff, and J. Weitz.
Unsupervised statistical clustering of environmental
shotgun sequences. BMC' bioinformatics, 10(1):316,
2009.

D. Kelley and S. Salzberg. Clustering metagenomic
sequences with interpolated Markov models. BM(C'
Bioinformatics, 11(1):544, 2010.

H. C. Leung, S. Yiu, B. Yang, Y. Peng, Y. Wang,

Z. Liu, J. Chen, J. Qin, R. Li, and F. Y. Chin. A
robust and accurate binning algorithm for
metagenomic sequences with arbitrary species
abundance ratio. Bioinformatics, 27(11):1489-1495,
2011.

Y.-W. Wu and Y. Ye. A novel abundance-based
algorithm for binning metagenomic sequences using
I-tuples. Journal of Computational Biology,
18(3):523-534, 2011.

X. Li and M. S. Waterman. Estimating the Repeat
Structure and Length of DNA Sequences Using
l-Tuples. Genome research, 13(8):1916-1922, 2003.

Y. Wang, H. C. Leung, S. Yiu, and F. Y. Chin.
Metacluster 4.0: a novel binning algorithm for ngs
reads and huge number of species. Journal of
Computational Biology, 19(2):241-249, 2012.

Y. Wang, H. C. Leung, S. Yiu, and F. Y. Chin.
MetaCluster 5.0: a two-round binning approach for
metagenomic data for low-abundance species in a
noisy sample. Bioinformatics, 28(18):1356-1362, 2012.
J. C. Wooley, A. Godzik, and I. Friedberg. A primer
on metagenomics. PLoS computational biology,

ACM-BCB 2013

6(2):€1000667, 2010.

S. Schbath, B. Prum, and E. DE TURCKHEIM.
Exceptional motifs in different Markov chain models
for a statistical analysis of DNA sequences. Journal of
Computational Biology, 2(3):417-437, 1995.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison.
Biological sequence analysis: probabilistic models of
proteins and nucleic acids. Cambridge university
press, 1998.

L. G. Wayne. International committee on systematic
bacteriology: announcement of the report of the ad
hoc committee on reconciliation of approaches to
bacterial systematics. Systematic and Applied
Microbiology, 10(2):99-100, 1988.

S. Schbath, B. Prum, and E. de Turckheim.
Exceptional motifs in different markov chain models
for a statistical analysis of dna sequences. Journal of
Computational Biology, 2(3):417-437, 1995.

G. J. McLachlan and S. U. Chang. Mixture modelling
for cluster analysis. Statistical Methods in Medical
Research, 13(5):347-361, 2004.

J.-J. Daudin, S. Li-Thiao-Te, and E. Lebarbier.
Statistical challenges from the analysis of
NGS-Metagenomics experiment., 2010.

G. McLachlan and T. Krishnan. The EM algorithm
and extensions, volume 382. John Wiley & Sons, 2007.
D. C. Richter, F. Ott, A. F. Auch, R. Schmid, and

D. H. Huson. MetaSim-A Sequencing Simulator for
Genomics and Metagenomics. PLoS ONE,
3(10):e3373, 2008.

L. Hubert and P. Arabie. Comparing partitions.
Journal of classification, 2(1):193-218, 1985.

W. M. Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American
Statistical association, 66(336):846-850, 1971.

H. Akaike. A new look at the statistical model
identification. Automatic Control, IEEE Transactions
on, 19(6):716-723, 1974.

G. Schwarz. Estimating the dimension of a model. The
annals of statistics, 6(2):461-464, 1978.

123



