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Abstract

Summary: Since cancer is a heterogeneous disease, tumor subtyping is crucial for improved

treatment and prognosis. We have developed a subtype discovery tool, called PINSPlus, that is:

(i) robust against noise and unstable quantitative assays, (ii) able to integrate multiple types of

omics data in a single analysis and (iii) dramatically superior to established approaches in identify-

ing known subtypes and novel subgroups with significant survival differences. Our validation on

12,158 samples from 44 datasets shows that PINSPlus vastly outperforms other approaches. The

software is easy-to-use and can partition hundreds of patients in a few minutes on a personal

computer.

Availability and implementation: The package is available at https://cran.r-project.org/

package¼PINSPlus. Data and R script used in this manuscript are available at https://bioinformat

ics.cse.unr.edu/software/PINSPlus/.

Contact: tinn@unr.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

After decades of screening, the chance of a person being diagnosed

with prostate or breast cancer has doubled (Esserman et al., 2009).

However, the number of patients with advanced disease has only

been marginally reduced, suggesting that current methods of screen-

ing result in either false positives or over-diagnosis. At the same

time, 30–55% of patients with non-small cell lung cancer develop

recurrence and die after curative resection (Uramoto and Tanaka,

2014), suggesting that a subset of patients would have benefited

from more aggressive treatments at early stages. The ability to ac-

curately diagnose patients would allow for better patient prognoses.

The purpose of subtyping multi-omics data is to identify molecu-

lar patterns that are similar not only at one level (e.g. mRNA), but

from a holistic perspective, that can take into consideration phe-

nomena at various levels (e.g. proteomics, epigenetics). Recent

efforts to address the challenge of integration often rely on joint stat-

istical modeling (Mo et al., 2013; Wang et al., 2014), which are lim-

ited by strong assumptions of the data distribution and by the gene

selection step used to reduce computational complexity. In addition,

these approaches are sensitive to even a slight change in molecular

measurements or parameter settings.

We have developed a radically different approach, Perturbation

clustering for data INtegration and disease Subtyping (PINSPlus)

which is built upon the resilience of patient connectivity and cluster

ensembles to ensure robustness against noise and bias. Our analysis

on 12 158 cancer samples demonstrates that PINSPlus overwhelm-

ingly outperforms existing approaches in identifying known sub-

types and in discovering novel patient subgroups with significant

survival differences.

2 Materials and methods

PINSPlus is an unsupervised approach for subtype discovery without

using any a priori knowledge (such as clinical variables or known

subtypes). The method is based on the observation that small

changes in quantitative assays will be inherently present between
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individuals, even in a truly homogeneous population. If distinct mo-

lecular subtypes do exist, they must be stable with respect to small

changes in quantitative assays (Supplementary Fig. S1). In order to

discover reliable subtypes, we estimate how often each pair of

patients is grouped together in the following scenarios: (i) when data

are perturbed, (ii) when using different data types and (iii) when

using different clustering techniques. We then partition patients into

subgroups that are strongly connected in all scenarios.

PINSPlus optimizes two algorithms of PINS (Nguyen et al.,

2017; Nguyen, 2017): (i) PerturbationClustering() to cluster a single

data type (Fig. 1A) and (ii) SubtypingOmicsData() to integrate

omics data (Fig. 1B). Given a single data type, the function

PerturbationClustering() repeatedly perturbs the data (by adding

Gaussian noise) and partitions the patients using different values for

cluster number. The number of clusters that gives the most stable

connectivity is considered optimal. The corresponding connectivity

is considered the optimal connectivity.

For data integration, the input of SubtypingOmicsData() consists

of multiple matrices for the same set of patients (rows) where each

matrix represents a data type. The function outputs: (i) subtyping

results using each data type, (ii) subtyping results using multi-omics

data in stage I and (iii) subtyping results in stage II (Fig. 1B).

In order to integrate omics data, we represent patient connectiv-

ity from each data type as a graph, with patients as nodes and con-

nectivity as edges. Our goal is to identify subgraphs that are strongly

connected across all data types. We merge the connectivities of all

data types into a similarity matrix that represents the overall con-

nectivity between patients (Fig. 1B). We use several similarity-based

algorithms to cluster the similarity and choose the partitioning that

agrees the most with the partitionings of individual data types. This

ensemble strategy ensures that the identified subtypes are consistent

across all data types, and are robust against the choice of clustering

algorithms. This completes stage I.

We also add an additional step to check whether the data has a

hierarchical structure, i.e. there are subgroups of patients within dis-

covered subtypes. Since our approach is an unsupervised approach,

we do not have prior information to take into account important

covariates, such as gender, race or demographics. If these signals are

predominant, we are likely to miss the real subtypes (Supplementary

Fig. S2). Another motivation is that there are often heterogeneous

subgroups of patients that share clinically relevant characteristics

even within a subtype. For example, in breast cancer, Luminal A

and Luminal B are both estrogen receptor positives and are likely to

be grouped together. One-round clustering would likely overlook

A
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Fig. 1. Overall workflow of PINSPlus. (A) Subtyping using a single data type. The function PerturbationClustering() reads a single matrix and yields the optimal

number of subtypes, as well as cluster membership for each patient. (B) Subtyping using multi-omics data. The input consists of multiple matrices (data types)

for the same set of patients (rows). The function SubtypingOmicsData() clusters each data type and combines the connectivities to subtype the multi-omics data

in stage I. In stage II, the algorithm also attempts to split each discovered group. The output is the cluster membership of each patient, for each data type, and for

each of stage I and II. (C) Early stoppage criterion. Besides parallel computing, PINSPlus also implemented an early stoppage criterion to speed up the analysis

without compromising the results. The triangle symbols indicate the early stop point for each k in PINSPlus. We stop the iterations when the AUC values for a

given number of cluster (k) converge
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the subgroups within the groups identified in stage I. In stage II, we

attempt to split each discovered group individually, based on rea-

sonable conditions set to avoid over-splitting: (i) stage I clustering

has to be extremely imbalanced and (ii) the splitting must be sup-

ported by a strong signal across all data types.

PINSPlus also implements an early stopping criterion for the process

of generating perturbed connectivity matrices (Fig. 1C). At each iter-

ation, we check whether the AUC values converge. The two panels in

Figure 1C show an example using kidney renal clear cell carcinoma

(KIRC) data. Each curve represents the AUCs for a value of k (number

of clusters). The triangle symbols in each panel indicate the early stop-

ping point for each k in PINSPlus. For mRNA data, the AUC values for

k¼2 are consistently larger than the rest and thus we terminate all iter-

ations for all values of k after only 20 iterations. For methylation, each

curve converges before reaching the maximum number of iterations.

It currently only takes several minutes for the software to cluster

hundreds of patients with three or more types of data and tens of

thousands of features. The parallel computing allows users to effi-

ciently analyze datasets with tens of thousands of patients. The soft-

ware uses k-means as the default clustering algorithm. We strongly

suggest that users run PINSPlus with this setting since it has been ex-

tensively tested. However, we also provide hierarchical clustering

and partitioning around medoids as built-in alternatives. Users

can also incorporate their own algorithm, distance metrics or cus-

tomized perturbation techniques into PINSPlus (Supplementary

Section S1 and Supplementary Fig. S3).

3 Results

We tested PINSPlus on the datasets that were analyzed in the origin-

al PINS paper (Nguyen et al., 2017): eight mRNA datasets with

known subtypes and six multi-omics datasets with known survival

(KIRC, GBM, LAML, LUSC and two METABRIC datasets). In add-

ition, we also tested PINSPlus on 30 new omics datasets obtained

from TCGA, for a total of 36 multi-omics datasets. We compared

PINSPlus with three established subtyping algorithms: Consensus

Clustering (CC) (Monti et al., 2003), Similarity Network Fusion

(SNF) (Wang et al., 2014) and iClusterPlus (Mo et al., 2013).

Supplementary Tables S1–S3 show the details of datasets.

Supplementary Table S5 shows the running time of each method.

For the eight mRNA datasets with known subtypes, we use the

Rand Index (RI) and Adjusted Rand Index (ARI) to assess the per-

formance of the resulted subtypes. PINSPlus yields the highest RI and

ARI values for every single dataset tested (Supplementary Table S4).

For the 36 omics datasets with survival information, we use Cox re-

gression to assess the survival difference of the discovered subtypes.

Table 1 shows the Cox P-values of the subtypes discovered by each of

the four approaches. There are nine datasets for which no method is

able to identify subtypes with significantly different survival profiles.

For the remaining 27 datasets, PINSPlus has significant P-values in all

of them whereas CC, SNF and iClusterPlus has significant P-values in

only 8, 14 and 10 datasets, respectively. More importantly, PINSPlus

has the most significant P-values in 23 datasets.

4 Conclusions

As an unsupervised approach, PINSPlus relies solely on molecular

data to discover disease subtypes. One caution is that a cluster of

samples could be determined not only by molecular measures but

also by other variables like environmental or clinical variables.

These variables could represent confounders and they should be con-

sidered explicitly when available. This problem can be addressed in

a number of ways, for instance by integrating the connectivity matri-

ces obtained from clinical variables. We plan to extend PINSPlus in

the future to exploit clinical data whenever possible.

Nevertheless, PINSPlus is a fast and powerful software for sub-

type discovery. PINSPlus overwhelmingly outperforms established

approaches in identifying known subtypes and discovering novel

subgroups of patients with significant survival differences. The soft-

ware is flexible enough to be applied in many areas to tackle un-

supervised machine learning problems involving either single or

multiple types of high-dimensional data.
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