
QSEA for fuzzy subgraph querying of KEGG pathways

Thair Judeh
tjudeh@wayne.edu

Tin Chi Nguyen
tin.nguyenchi@wayne.edu

Dongxiao Zhu
dzhu@wayne.edu

Department of Computer Science
Wayne State University

Detroit, MI 48202

ABSTRACT
As biological pathway databases continually increase in size
and availability, efficient tools and techniques to query these
databases are needed to mine useful biological information.
A plethora of existing techniques already allow for exact or
approximate query matching. Despite initial success, power-
ful techniques used for XML and RDF query matching have
yet to be sufficiently exploited for use in query matching in
the bioinformatics domain.

In this paper, we employ the transitive closure to focus
on matching hierarchical queries, i.e., finding pathways or
graphs that possess a query’s overall hierarchical structure.
This approach allows for a greater latitude in fuzzy matching
by focusing on the overall hierarchies of queries and graphs.
Since hierarchies are only inherent in directed acyclic graphs,
we have also developed a robust heuristic to heuristically
solve the minimum feedback arc set problem. Analysis on 53
H. sapiens and 23 S. cerevisiae cyclic KEGG pathways have
shown that our heuristic performs quite favorably. We have
implemented the techniques in an easy to use GUI software
QSEA (Query Structure Enrichment Analysis). Binaries are
freely available at http://code.google.com/p/s-e-a/ for
Windows and MAC.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms, network problems

General Terms
Algorithms

Keywords
Fuzzy subgraph querying, Feedback arc set

1. INTRODUCTION
Many resources are now available that describe the path-
ways of different biological processes including KEGG [17,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM-BCB’12, October 7-10, 2012, Orlando, FL, USA
Copyright 2012 ACM 978-1-4503-1670-5/12/10 ...$15.00

18], Biocarta (http://www.biocarta.com), and Reactome
[9, 19]. These databases and others contain a wealth of bi-
ological information. Since the number of overall databases
and the number of pathways within a database are contin-
uously increasing, extracting meaningful biological insights
may be too tedious to do manually. There is a need for var-
ious frameworks to at least partially automate the process,
and they can be divided into three major categories [22].

First, network alignment is used to compare two or more
networks of the same type from different species. Some of
its major goals include identifying functional or conserved
protein modules and network evolution analysis. Network
alignment can also be used to predict novel interactions that
may exist in one species but are absent in another.

Another category, network integration, focuses on combining
different networks from the same species. These networks
may be transcription regulatory networks, protein-protein
interaction networks, signaling pathways, and metabolic net-
works. Some major goals include the identification of con-
served modules across several networks, the relationships
between different data types, and the prediction of interac-
tions.

Finally, network querying is used to find a subnetwork mod-
ule or query across a network or database of networks. Some
of its major goals include knowledge transfer across species
and the identification of conserved or repeated instances of
the query across a network or database of networks. In
particular, network querying holds great promise to extract
useful biological insights from the pathway databases on a
large scale and is the focus of this paper.

Currently, there are a variety of different frameworks and
tools that perform network querying varying from techniques
that only produce exact matches to techniques that produce
approximate matches. QPath [23], for example, takes as in-
put a linear query and outputs a linear subpathway. It al-
lows for results that do not contain all of the query proteins
and also allows for the introduction of non-query proteins as
well. QNet [10] later on extended QPath by supporting tree
queries on subnetworks of bounded tree width. Both QPath
and QNet rely on the color coding scheme introduced by
Alon et al. [1] to identify subnetworks with a simple topol-
ogy in an underlying network. Another framework, SAGA
[25], also performs an approximate matching of the query
network to the target network. It calculates a similarity dis-

ACM-BCB 2012 474

tance between the two and takes into account the structural
similarity, the number of vertex mismatches, and the num-
ber of gap vertices. For more details on current network
querying techniques, please refer to [13].

While the current techniques have proven useful and bene-
ficial, there exist other useful techniques in the XML/RDF
querying domain that have yet to be fully exploited to query
biological pathways. In the XML/RDF querying domain, a
great multitude of XML/RDF documents need to be queried
both efficiently and accurately. Many techniques in this do-
main inherently focus on “fuzzy” hierarchical matching from
which the bioinformatics domain may greatly benefit from.

Starting with XML querying, historically the focus was on
querying twigs, a tree-like “network” where edges are either
a direct parent-child relationship or an ancestor-descendant
relationship, i.e., reachability in the latter case. One popu-
lar algorithm, TwigStack [6], has two major stages. First, it
computes partial solutions for query root-to-leaf paths and
compactly represents them using a chain of linked stacks.
In the second stage, TwigStack merges and joins the par-
tial results to compute twig query results. TwigStack, in
conjunction with modified B-trees, can match query twig
patterns in sub-linear time.

Vanilla XML documents, however, are trees and do not allow
for a robust range of networks. Thus, for RDF documents,
a more general and robust representation would be a DAG
(Directed Acyclic Graph). For example, TwigStackD [7] is
an extension of TwigStack that at its essence uses the transi-
tive closure to process twig queries. Unlike other approaches,
though, TwigStackD does not precompute the transitive clo-
sure or path indices for graphs. Instead, it represents a DAG
using a combination of interval encodings on the aforesaid
DAG’s spanning tree. It also uses a customized predecessor
index to determine the reachability of vertices based on the
remaining edges not present in the spanning tree. Using this
alternative representation for DAGs, the transitive closure
is derived losslessly. TwigStackD can efficiently query twigs
against DAGs with quadratic complexity in the average size
of query variable bindings and a linear space cost for the
data.

Given the powerful techniques available in the XML/RDF
domain, it is worthwhile to explore their use to query biolog-
ical pathways. For QSEA we specifically use the transitive
closures of both query and queried graphs to focus more on
the shared hierarchies between queries and pathways. The
use of transitive closures allow us to focus on DAGs and
go beyond linear paths and trees as in QPath and QNet,
respectively. We also allow for approximate solutions by al-
lowing any number of unmapped query vertices and absent
ancestor-descendant edges from the initial query graph. Fi-
nally, we developed a robust heuristic to solve the feedback
arc set problem that shows promising potential.

2. METHODS
2.1 Overview
Figures 1 and 2 present the QSEA framework and GUI,
respectively. QSEA may be divided into a preprocessing
stage and a query processing stage. For the preprocessing
stage, QSEA 1) uses the KEGG API to extract all pathways

Figure 1: The QSEA framework

P for the selected organism. 2) For each pathway Pi, its
edge and vertex betweennesses are calculated. 3) For any
pathway with cycles, Algorithm 1 is used to heuristically
remove a feedback arc set. For these pathways, their edge
and vertex betweennesses are recalculated. 4) All shortest
paths and the transitive closure for each pathway are then
calculated. 5) For each pathway the shortest paths with
largest mean edge and vertex betweennesses are retained
with precedence given to edge betweenness. These steps
occur only once or when an organism needs to be updated.

For processing queries, QSEA does the following: 1) a user
inputs a query graph stored in a space delimited Simple
Interaction Format (SIF) file that can also be used by Cy-
toscape [21]. 2) The user query graph is then mapped to
each pathway Pi. Both the number of unmapped query ver-
tices and the number of missing query hierarchical edges,
i.e., ancestor-descendant relationships, are recorded for use
in sorting later on. 3) A set of results is constructed by

ACM-BCB 2012 475

Figure 2: The QSEA GUI. 1) QSEA’s menu bar where most of its functionality lies. From QSEA’s menu bar, a
user can select an organism, load and analyze a query, load previous results, save current results, update/fetch
an organism using the KEGG API, and view the quick start guide. 2) This part of QSEA displays the current
organism under analysis. 3) QSEA also allows users to select the different types of pathways to examine.
4)QSEA’s results are displayed here. Upon clicking a result, the highlighted subpathway within its respective
parent pathway is fetched from KEGG as illustrated in Figure 6.

using combinations of all shortest paths between any two
reachable query genes that are also reachable in the target
pathway. 4) Results are sorted by first maximizing the num-
ber of query vertices found, then minimizing the number of
missing hierarchical edges, and finally minimizing the size of
the result, i.e., the number of “gap” vertices introduced. 5)
The results are displayed in the QSEA GUI as illustrated in
Figure 2. Upon clicking a result, QSEA will use the default
web browser to fetch the KEGG pathway and highlight the
query result as illustrated in Figure 6.

2.2 Edge and Vertex Betweennesses
We represent each KEGG pathway as an unweighted, di-
rected graph G(V,E) with vertex set V and edge set E
where the KEGG proteins are vertices and the relationships
among the proteins form the edges. For each KEGG path-
way, its edge and vertex betweennesses are calculated. Origi-
nally introduced by Anthonisse [3] and Freeman [14], vertex
betweenness is a measure of centrality that quantifies the
number of shortest paths that pass through a given vertex.
Furthermore, if there are n shortest paths between any two
vertices, then a vertex that lies on one of their shortest path
receives a contribution of 1

n
. In essence, vertices with high

betweennesses scores are quite important as a good number
of a graph’s shortest paths pass through them. Their loss
may significantly impact if not make impossible the flow of
information between various vertices.

Edge betweenness is an extension to vertex betweenness ex-
cept that it applies to edges instead of vertices. Similar
to vertices with a high vertex betweenness, an edge with
a high edge betweenness has many shortest paths passing
through it. In fact, Newman and Girvan [20] used edge be-
tweenness to divide a pathway into different communities or

Figure 3: Top: A strongly connected component
from the KEGG H. sapiens MAPK Signaling Path-
way. Its transitive closure on the right is a fully con-
nected graph. In this case, all DAG queries would
result in a query hit. Bottom: Removing the edge
1 → 2 produces a diamond subgraph, which happens
to be a common biological network motif [2]. Its
transitive closure on the right possess a hierarchy of
vertices unlike the original subgraph.

ACM-BCB 2012 476

Algorithm 1: A heuristic to remove feedback arc sets

1: Input: An unweighted, directed graph G(V,E) with
vertex set V and edge set E

2: Output: The acyclic graph G(V,E − EFAS) where
EFAS is a feedback arc set

3: Remove all self-loops from G
4: Find all non-trivial strongly connected components S

using Tarjan’s algorithm [24]
5: Find edge and vertex betweennesses EB and V B
6: Extract from G the adjacency lists A
/* Prioritizes exploring edges with high

betweennesses scores */

7: Sort A first according to EB and then V B in descending
order

8: for i = 1,...,|S| do
9: Run SCC-DFS(Si)

10: end
11: Return G which is now acyclic. The set of edge sets

ESi,j,FAS removed from the strongly connected
components form EFAS

/* Strongly Connected Component Depth-First Search

*/

12: SCC-DFS
13: Sort the vertices VSi of Si in descending order of vertex

betweenness
14: Extract from A the set of sorted adjacency lists Ai that

represents Si

15: for j = 1,...,|Si| do
16: Begin a depth-first search at vertex VSi,j using Ai to

prioritize the order of vertices to visit. Remove all of
the back edges found in the depth-first search to
obtain ESi,j,FAS .

17: end
18: Remove from E the set of edges ESi,j,FAS that

minimizes first the number of edges removed and then
the edge betweenness of the edges removed

modules, and they provided an efficient O(V E) algorithm
as well. It should be noted that Brandes [5] has also pre-
sented an O(V E) algorithm for vertex betweenness that can
be extended to edge betweenness. In our case, we use edge
and vertex betweennesses to both guide a depth-first search
(DFS) and select shortest paths that are most significant.

2.3 Feedback Arc Set
For its fuzzy and hierarchical querying, QSEA relies on the
transitive closure. Briefly, for any directed graph G(V,E)
with vertex set V and edge set E, its transitive closure TC
is a concise representation of the reachability of the vertices
in V . More specifically, TC’s vertex set VTC equals V while
its edge set ETC is a superset of E. Furthermore, an edge
(i, j) in ETC either denotes the presence of an edge (i, j) in E
or the presence of a series of edges in E that can be traversed
to reach vertex j starting from vertex i . The transitive clo-
sure may be calculated using the Floyd-Warshall algorithm
in O(|V |3) since the existence of a shortest path from vertex
i to vertex j means that j is reachable from i. The transitive
closure may also be computed in O(|V |2.376). For more de-
tails on efficiently calculating the transitive closure, please
refer to [4].

Algorithm 2: Minimum feedback arc set removal

1: Input: An unweighted, directed graph G(V,E) with
vertex set V and edge set E

2: Output: The acyclic graph G(V,E − EMFAS) where
EMFAS is the minimum feedback arc set

3: Remove all self-loops from G
4: Find all non-trivial strongly connected components S

using Tarjan’s algorithm [24]
5: for i = 1,...,|S| do
6: Extract the subgraph Gi that represents Si

7: Set the number of edges to remove R to 0
8: while Gi is cyclic do
9: Increment R by 1

10: Find all combinations C of the edges ESi

choosing R edges at a time
11: for j = 1,...,|C| do
12: Reverse the set of edges Cj in Gi

13: if Gi is acyclic then
14: Break from the inner for loop
15: end
16: Undo the edge set reversal

17: end

18: end
19: Remove the last edge set Cj from E where Cj is a

minimum feedback arc set for Gi

20: end
21: Return G which is now acyclic. Collectively, all Cs

previously removed form EMFAS

Furthermore, it should be noted that for DAGs, the transi-
tive closure can represent a hierarchy of vertices. It is this
property that QSEA exploits to process a query graph Q
against a queried graph P since an exact query hit occurs
if and only if ETCQ is a subset of ETCP . In other words,
one can also find a topological sort ordering that is common
to the transitive closures of the query graph Q and queried
graph P . Briefly, a topological sort ordering is a non-unique
linear ordering of a DAG’s vertices such that for any edge
(i, j), i will always appear before j in the linear ordering.
As a result, since QSEA relies on the transitive closure for
its fuzzy and hierarchical querying, it is of particular impor-
tance that both Q and P are DAGs. Otherwise, it is not
possible to exploit a hierarchy of vertices in the presence of
cycles as illustrated in Figure 3. In Figure 3, the top sub-
graph is a strongly connected component from the KEGG
H. sapiens MAPK Signaling Pathway. Its transitive closure
is a fully connected graph. As a result, any query graph
without self-loops will satisfy the subset condition and will
result in a query hit, which does not allow for any discrim-
inative biological insights. The diamond subgraph on the
bottom of Figure 3, on the other hand, is a DAG and pos-
sesses an meaningful hierarchy for querying. In this case,
only a subset of queries will result in a query hit.

To ensure that both the query graphs and queried graphs
are DAGs, QSEA uses two different approaches. For query
graphs, the solution is to simply restrict all queries to DAGs.
For the queried KEGG pathways, however, such an option
may remove meaningful pathways. For H. sapiens, M. mus-
culus, and S. cerevisiae, about 25% of their respective path-
ways have cycles (53 out of 229, 53 out of 225, and 23 out

ACM-BCB 2012 477

Figure 4: The number of edges removed from 23 cyclic S. cerevisiae and 53 cyclic H. sapiens KEGG pathways,
respectively. In both data sets, QSEA equals or outperforms Graphviz 100% of the time. For S. cerevisiae the
last column corresponds to the KEGG pathway Glycine, serine and threonine metabolism. It has a non-trivial
strongly connected component of 14 vertices and 88 edges. Algorithm 2 was unable to find the minimum
feedback arc set due to insufficient memory.

of 78, respectively). Simply removing them would lead to a
loss in significant pathways such as Cell Cycle in all three
species. As such, QSEA uses a robust heuristic to remove
cycles from the pathways while preserving the overall direc-
tional flow of a pathway.

First, we present some background on the underlying prob-
lem. For a directed graph G(V,E), EFAS ⊂ E is a feed-
back arc set if the removal of EFAS makes G acyclic [4].
In particular, a minimum feedback arc set EMFAS ⊂ E
is the minimum number of edges whose reversal makes G
acyclic [4]. For arbitrary graphs, the problem is known to
be NP -hard, and the best known approximation has ratio
O(log |V | log log |V |) [12].

Heuristically solving the feedback arc set is also a well known
subproblem in drawing directed graphs with minimal edge
crossings. For example, Graphviz [11] uses a depth-first
search (DFS) to heuristically eliminate some edges to break
cycles in order to rank the vertices. Briefly, DFS divides
edges into tree edges and non-tree edges consisting of for-
ward edges, back edges, and cross edges [8]. Edges whose
vertices are visited for the first time form the tree edges of
a depth-first forest. Forward edges are non-tree edges that
directly connect a vertex i with a descendant vertex j in
a depth-first tree whereas back edges are the opposite, i.e.,
they directly connect a descendant j with an ancestor i. Fi-
nally, any other non-tree edge is classified as a cross edge.

It should be straightforward to observe that all back edges
found by DFS form a feedback arc set. As such, Graphviz

takes one non-trivial strongly component, i.e., a subgraph in
which any two vertices are connected either directly or indi-
rectly through a number of intermediate vertices, and counts
the number of times an edge in the strongly connected com-
ponent forms a back edge via a depth-first search. The edge
with maximal count is removed, and the process is repeated
until no strongly connected components remain [15].

QSEA takes a similar approach to Graphviz with some ma-
jor differences as described in Algorithm 1. The most major
difference is the use of vertex and edge betweennesses as pre-
sented in Section 2.2 to guide DFS when it chooses vertices
to visit and edges to explore. By using betweenness to guide
DFS, QSEA greedily focuses on edges and vertices with high
betweenness. This allows the forest of trees generated by
DFS to be extracted deterministically. More importantly,
though, it is hoped that the edges in cycles that become
back edges have a low betweenness score, which in turn may
be of less importance for the overall pathway.

To compare the performance of QSEA and Graphviz, Algo-
rithm 2, outlined in [16], is used as a reference point as it
is able to determine a minimum feedback arc set for each
strongly connected component. Algorithm 2 is able to find
EMFAS via a näıve approach that checks all possible com-
binations of edges for a given number of edges R. Given
a non-trivial strongly component S with edge set ES and
R = |ES,MFAS |, Algorithm 2 has to check

∑R
e=1

(|ES |
e

)
edge

combinations in G in order to find the minimum feedback
arc set for S. This process may be unfeasible for relatively
small values of ES as seen in Figure 4.

ACM-BCB 2012 478

Figure 5: A box plot view of the results from Fig-
ure 4. It should be noted that the KEGG path-
way Glycine, serine and threonine metabolism was
removed from the S. cerevisiae box plot since Algo-
rithm 2 failed due to insufficient memory.

In Figure 4, we compared the performance of QSEA (Al-
gorithm 1), a näıve approach (Algorithm 2), and Graphviz
on 23 cyclic S. cerevisiae and 53 cyclic H. sapiens KEGG
pathways, respectively. It should be noted that we focused
solely on the size of the feedback arc sets removed and do
not take into account the actual edges removed by either
algorithm. As illustrated in Figure 4, QSEA outperforms
Graphviz 100% of the time.

We can also observe from Figure 4 that both heuristics per-
form quite well in general and are able to remove a minimum
feedback arc set for some of the pathways selected. When
they differ, though, QSEA removes less edges overall com-
pared to Graphviz as indicated by their respective Euclidean
distances from Algorithm 2. Briefly, we calculated the Eu-
clidean distance as√√√√

n∑
i=1

(EMFASi − EFASi)
2

where EMFAS corresponds to the vector of minimum feed-
back arc set sizes removed by Algorithm 2 and EFAS cor-
responds to the vector of feedback arc set sizes removed
by either QSEA or Graphviz. For S. cerevisiae QSEA has
a Euclidean distance of 3.46 from Algorithm 2 as opposed
to Graphviz’s Euclidean distance of 13.27. For H. sapiens
QSEA has a Euclidean distance of 8.78 from Algorithm 2 as
opposed to Graphviz’s Euclidean distance of 32.95. These
results are further illustrated in Figure 5.

2.4 Shortest Paths and Transitive Closure
After the feedback arc sets are removed and vertex and edge
betweennesses are recalculated, all shortest paths between
any two vertices i and j are calculated. Since there may
be multiple shortest paths between any two vertices, only

the shortest paths with largest mean edge and vertex be-
tweennesses are kept while prioritizing edge betweenness.
We hypothesize that these shortest paths play a more sig-
nificant role compared to other shortest paths as they cap-
ture a larger snapshot of the pathway or graph at a global
level. Regardless, there may still be multiple shortest paths
between any two vertices i and j. As such, QSEA will dis-
play all combinations of shortest paths in the results when
needed. The transitive closures for each pathway are also
calculated and stored.

2.5 Query Matching and Output
Once preprocessing is complete, QSEA is ready to take as
input user query graphs that follow a space-delimited Simple
Interaction Format (SIF). Using the KEGG API, QSEA is
able to support a variety of labeling schemes including NCBI
GeneID, NCBI GI, GenBank, UniGene, and UniProt. In
the SIF file, users can construct two types of edges similar
to TWIGs presented in the introduction. The first edge is a
direct parent-child edge in which vertex i connects directly
to vertex j. The second edge is an ancestor-descendant edge
in which there may be from 0 to any number of arbitrary
vertices between i and j. Finally, it should be noted that
a gene may map to multiple locations in a KEGG pathway,
which QSEA is able to handle as illustrated in Figure 6.

For query matching QSEA is able to support both exact and
approximate query graph solutions. For this purpose, after
QSEA maps a query Q onto a pathway P to get QPi, QSEA
makes note of the number of unmapped query vertices UVi

for each pathway Pi. QSEA then also calculates the tran-
sitive closure for QPi to get QTCi. First, for direct edges
mentioned previously, QSEA requires an exact match. Oth-
erwise, for ancestor-descendant edges, QSEA allows for any
number of mismatches. Thus, QSEA also takes into account
the number of absent ancestor-descendant edges AE. Once
this process is complete, QSEA constructs a set of graphs
as results from all possible combinations of shortest paths
between two vertices i and j that are reachable both in Pi

and QPi.

After processing all of the pathways and extracting their re-
sulting graphs, QSEA ranks them according to three criteria.
First, it maximizes the presence of query vertices. Then, it
minimizes the number of absent ancestor-descendant edges.
Finally, it minimizes the size of the resulting graphs. Using
these criteria, QSEA prioritizes query results that possess
all of the query vertices and edges with minimal size.

An example of the query matching and output is presented
in Figure 6. First, a SIF file is constructed consisting of
two direct parent-child edges and three ancestor-descendant
edges. The SIF file is then processed into a graph where each
vertex uniquely represents a gene. After mapping the query
graph to its MAPK signaling pathway version, a query hit is
found. The highlighted query result is fetched from KEGG
and displayed in a user’s default web browser.

3. CONCLUSIONS
We presented QSEA (Query Structure Enrichment Analy-
sis). Our contributions are two-fold. First, we introduced
the use of XML/ RDF techniques into biological pathway
querying. Specifically, the use of the transitive closure allows

ACM-BCB 2012 479

Figure 6: Top Left: An example query file. A minus sign represents an ancestor-descendant edge whereas
an equal sign represents a direct parent-child edge. In this case, there are two direct parent-child edges and
three ancestor-descendant edges in the query. Top right: The query represented as a graph. Dashed lines
represent ancestor-descendant edges whereas solid lines represent. For ease of cross-referencing with the
KEGG results below, gene names are used. Middle: QSEA transforms the query into its pathway specific
form on the right for the KEGG S. cerevisiae MAPK signaling pathway, which has two instances of SHO1,
three instances of STE11, two instances of STE12, and two instances of DIG2. Bottom: QSEA is able to
display simultaneously multiple instances of a gene all at once. All vertices highlighted in yellow are part of
the query result. Depending on the foreground color, red denotes a query vertex whereas blue denotes a“gap”
vertex introduced to connect the query vertices. The network has a final score of 0 for vertex mismatches, 6
for edge mismatches due to redundant edges, and 20 for network size.

ACM-BCB 2012 480

for focus on matching hierarchies between queries and their
target pathways. Second, we introduced a robust heuristic
to solve the feedback arc set problem which has a promis-
ing performance. Our contributions are implemented in an
easy-to-use GUI software. Binaries for QSEA are freely
available at http://code.google.com/p/s-e-a/ for Win-
dows and MAC.

For future work, we hope to test the potential of the QSEA’s
heuristic for the feedback arc set find the “information flow”
of a graph. We also hope to develop a more robust score
function rank query results. Finally, we hope to compare
feedback arc sets found by various algorithms and compare
them in terms of biological functional importance in addition
to size.

4. ACKNOWLEDGMENTS
We would like to thank Nicolas Bruno for providing us with
the source code for PathStack and TwigStack. We would
also like to thank the reviewers for their helpful and useful
feedback.

5. REFERENCES
[1] N. Alon, R. Yuster, and U. Zwick. Color-coding. J.

ACM, 42(4):844–856, July 1995.

[2] U. Alon. Network motifs: theory and experimental
approaches. Nature Reviews Genetics, 8(6):450–461,
2007.

[3] J. M. Anthonisse. The rush in a directed graph.
Technical report, Stichting Mathemastisch Centrum,
Amsterdam, The Netherlands, 1971.

[4] J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory,
Algorithms and Applications. Springer Publishing
Company, Incorporated, 2nd edition, 2008.

[5] U. Brandes. A faster algorithm for betweenness
centrality. Journal of Mathematical Sociology,
25:163–177, 2001.

[6] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: optimal xml pattern matching. In Proceedings of
the 2002 ACM SIGMOD international conference on
Management of data, SIGMOD ’02, pages 310–321.
ACM, 2002.

[7] L. Chen, A. Gupta, and M. E. Kurul. Stack-based
algorithms for pattern matching on dags. In
Proceedings of the 31st international conference on
Very large data bases, VLDB ’05, pages 493–504.
VLDB Endowment, 2005.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[9] D. Croft, G. O’Kelly, G. Wu, R. Haw, M. Gillespie,
L. Matthews, M. Caudy, P. Garapati, G. Gopinath,
B. Jassal, S. Jupe, I. Kalatskaya, S. Mahajan, B. May,
N. Ndegwa, E. Schmidt, V. Shamovsky, C. Yung,
E. Birney, H. Hermjakob, P. D’Eustachio, and
L. Stein. Reactome: a database of reactions, pathways
and biological processes. Nucleic Acids Research,
39(Database issue):D691–D697, Jan. 2011.

[10] B. Dost, T. Shlomi, N. Gupta, E. Ruppin, V. Bafna,
and R. Sharan. QNet: A Tool for Querying Protein
Interaction Networks. Journal of Computational
Biology, 15(7):913–925, 2008.

[11] J. Ellson, E. Gansner, L. Koutsofios, S. North,
G. Woodhull, S. Description, and L. Technologies.
Graphviz - open source graph drawing tools. In
Lecture Notes in Computer Science, pages 483–484.
Springer-Verlag, 2001.

[12] G. Even, J. S. Naor, B. Schieber, and M. Sudan.
Approximating minimum feedback sets and multicuts
in directed graphs. ALGORITHMICA, 20:151–174,
1998.

[13] V. Fionda and L. Palopoli. Biological network
querying techniques: Analysis and comparison.
Journal of Computational Biology, 18(4):595–625,
2011.

[14] L. C. Freeman. A Set of Measures of Centrality Based
on Betweenness. Sociometry, 40(1):35–41, Mar. 1977.

[15] E. R. Gansner, E. Koutsofios, S. C. North, and
K. phong Vo. A technique for drawing directed
graphs. IEEE Transactions on Software Engineering,
19:214–230, 1993.

[16] I. Ispolatov and S. Maslov. Detection of the dominant
direction of information flow and feedback links in
densely interconnected regulatory networks. BMC
Bioinformatics, 9(1):424, 2008.

[17] M. Kanehisa and S. Goto. Kegg: Kyoto encyclopedia
of genes and genomes. Nucleic Acids Research,
28(1):27–30, 2000.

[18] M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, and
M. Tanabe. Kegg for integration and interpretation of
large-scale molecular data sets. Nucleic Acids
Research, 40(D1):D109–D114, 2012.

[19] L. Matthews, G. Gopinath, M. Gillespie, M. Caudy,
D. Croft, B. de Bono, P. Garapati, J. Hemish,
H. Hermjakob, B. Jassal, A. Kanapin, S. Lewis,
S. Mahajan, B. May, E. Schmidt, I. Vastrik, G. Wu,
E. Birney, L. Stein, and P. D’Eustachio. Reactome
knowledgebase of human biological pathways and
processes. Nucleic Acids Research, 37(Database
issue):D619–622, Jan. 2009.

[20] M. E. J. Newman and M. Girvan. Finding and
evaluating community structure in networks. Physical
Review E: Statistical, Nonlinear, and Soft Matter
Physics, 69(2):026113, Feb 2004.

[21] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T.
Wang, D. Ramage, N. Amin, B. Schwikowski, and
T. Ideker. Cytoscape: A Software Environment for
Integrated Models of Biomolecular Interaction
Networks. Genome Research, 13(11):2498–2504, Nov.
2003.

[22] R. Sharan and T. Ideker. Modeling cellular machinery
through biological network comparison. Nature
Biotechnology, 24:427–433, 2006.

[23] T. Shlomi, D. Segal, E. Ruppin, and R. Sharan.
Qpath: a method for querying pathways in a
protein-protein interaction network. BMC
Bioinformatics, 7(1):199, 2006.

[24] R. Tarjan. Depth-First Search and Linear Graph
Algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[25] Y. Tian, R. C. McEachin, C. Santos, D. J. States, and
J. M. Patel. Saga: a subgraph matching tool for
biological graphs. Bioinformatics, 23(2):232–239, 2007.

ACM-BCB 2012 481

