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Abstract

Pathway analysis has been widely used to detect pathways and functions associated with complex disease phenotypes. The prolif-
eration of this approach is due to better interpretability of its results and its higher statistical power compared with the gene-level
statistics. A plethora of pathway analysis methods that utilize multi-omics setup, rather than just transcriptomics or proteomics, have
recently been developed to discover novel pathways and biomarkers. Since multi-omics gives multiple views into the same problem,
different approaches are employed in aggregating these views into a comprehensive biological context. As a result, a variety of novel
hypotheses regarding disease ideation and treatment targets can be formulated. In this article, we review 32 such pathway analysis
methods developed for multi-omics and multi-cohort data. We discuss their availability and implementation, assumptions, supported
omics types and databases, pathway analysis techniques and integration strategies. A comprehensive assessment of each method’s
practicality, and a thorough discussion of the strengths and drawbacks of each technique will be provided. The main objective of this
survey is to provide a thorough examination of existing methods to assist potential users and researchers in selecting suitable tools
for their data and analysis purposes, while highlighting outstanding challenges in the field that remain to be addressed for future
development.

Keywords: integrative pathway analysis, multi-omics integration, multi-cohort analysis, pathway graph transformation.

Introduction
Due to the prevalence of microarray and RNA-seq data in early
stages, many pathway analysis methods have been developed for
the analysis of gene expression data. The first generation are the
over-representation analysis (ORA) methods [1–8]. These methods
take a list of differentially expressed (DE) genes as input and
identify the pathways in which the DE genes are over- or under-
represented. The second generation are the Functional Class Scor-
ing (FCS) methods [9–14]. FCS methods eliminate dependency
on gene selection criteria by taking all genes into considera-
tion. The third generation are the Topology-based (TB) methods
[15–27]. These methods aim to exploit pathway topology and gene
interactions that are meant to capture and describe the biological
phenomenon. Yet, they still focus on gene expression analysis and
are not able to analyze other types of data or integrate multiple
experiments.

Integrating information from different types of data or exper-
iments has become increasingly more essential to obtain a com-
prehensive overview of biological systems [28, 29]. The ability
to analyze together independent studies allows researchers to

increase sample size and reproducibility, while integrating dif-
ferent types of assays will increase the ability to uncover the
complete cause of diseases and their functional consequences,
which no single type of assay would be able to provide. This has led
to the introduction of many techniques that utilize multi-omics
and multi-cohort data to identify the pathways that underly the
conditions or phenotypes of interest.

In this article, we review 32 approaches that have been
designed for the purpose of integrative pathway analysis in
the multi-omics and/or multi-cohort setup. Figure 1 shows the
timeline of integrative pathway analysis techniques developed
between 2005 and 2022. The availability of many methods and
their continuous development indicate the high demand for path-
way analysis using multi-omics data in the research community
over the past 17 years. We note that there exist many other useful
tools for pathway analysis. For example, LncSEA [30], LnCompare
[31] and DIANA-miRPath [32] can perform pathway analysis using
noncoding RNA data. However, these methods are not within
the scope of this article because they are not designed for data
integration (multi-omics and/or multi-cohort integration).
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Figure 1. Timeline of the approaches developed for pathway analysis and multi-omics integration.

This will be the first article that provides such an in-depth
review and discussion about integrative pathway analysis
approaches using multi-omics and multi-cohort data. Many
review articles [33–36] provide comprehensive assessments of
pathway and subnetwork identification methods, but they are
limited to the analysis of a single type of data, i.e. mRNA or scRNA-
seq data. Other surveys [37–41] review techniques developed
for integrating multi-omics data in general, without discussing
how these can be applied in the context of pathway analysis. In
contrast, here, we provide a comprehensive review of prominent
methods capable of integrating multi-cohort and multi-omics
data for the purpose of pathway analysis. Our survey is expected
to benefit life scientists who wish to choose a method that
is most suitable for their data. At the same time, this survey
also benefits computational scientists who wish to know the
limitations of existing methods in order to develop new methods
and infrastructure addressing the current shortcomings.

In Section Availability and Implementation we will describe
the methods’ availability, their implementation and impor-
tant features. In Section Pre-analysis we will present the steps
each method follows prior to pathway analysis. In Section
Integrative Pathway Analysis we will describe and categorize these
methods according to the techniques they employ for pathway
analysis and data integration while presenting their advantages
and disadvantages. In Section Method Assessment we will assess
the quality of the methods based on six different metrics. Finally,
in Section Summary and Discussion, we will highlight outstanding
challenges in the field that remain to be addressed for further
enhancements. We also provide detailed description, analysis
pipeline and practicality of each method in supplementary mate-
rials (SupplementaryNote.pdf, Supplementary-Table-S1.xlsx,
Supplementary-Table-S2.xlsx).

Availability and implementation
Tables 1 and 2 provide a summary of the availability and impor-
tant features of each of the 32 surveyed methods. Table 1 shows
available hyperlinks, platforms, availability, year, number of cita-
tions (Google Scholar) and references to their publications. Among
the 32 methods, R packages and web-based tools are the most
common platforms used for integrative pathway analysis. More-
over, the web interface is usually intuitive and provides options
for selecting the input, analyzing the data and visualizing the
output. Three of the surveyed tools, i.e. CancerMA [42], DANUBE
[43] and rPAC [44], are not available. Regardless, we include these
approaches in the survey because we believe that understanding
these methods will be beneficial to readers.

Table 2 shows the features that are currently supported by
the tools: supported data types, pathway databases embedded
in the tools, ID mapping (built-in/user-provided) and interactive
visualization. We group the methods into four categories
based on their analysis techniques and purposes: (i) gene-level,
P-value-based integration, (ii) pathway-level, P-value-based

integration, (iii) graph transformation-based and (iv) machine-
learning-based analysis. The categories are discussed in detail in
Section Integrative Pathway Analysis. All of the reviewed tools are
capable of analyzing transcriptomics as gene expression data
are the most prevalent type of available omics data. Many of the
methods are capable of integrating transcriptomics with other
types of data, including genomic (e.g. SNP, copy number variation),
epigenomic, proteomic and metabolomic data. In addition to
multi-omics integration, there are 19 methods that allow users
to integrate multiple datasets/experiments (meta-analysis).
Methods with interactive visualization capability provide the
diagrammatic representation of omics and interactions, as well
as the quantitative analysis results on their graphical user
interface. Users can interactively explore the analysis results,
gene-level statistics and pathway networks, and choose the set of
impacted pathways based on their domain knowledge and expert
opinion.

Regarding pathway knowledge, 22 methods embed pathways
from known pathway databases in their software. Embedded
databases include KEGG [74], GO [75], Reactome [76], STRING
[77], MirTarBase [78], NCI-PID [79], Biocarta [80], PharmGKB [81],
Wikipathways [82], TRRUST [83], BioCyc [84], NetPath [85], INOH
[86], EHMN [87], SMPDB [88] and SignaLink [89]. For these tools,
users can conveniently use the built-in pathway information for
their analysis without the need of providing pathways as part of
the input. As each database uses different gene/compound IDs,
it is important that the molecular data are mapped to the same
IDs as the gene/compound IDs in the pathways. Such mapping
can be either a user-imported mapping file or based on a built-
in mapping database. Many methods also allow users to import
their own pathway information (mostly in the format of gene
sets). Clearly, the built-in mapping database is preferable since it
relieves users from technical details and mapping knowledge.

High-level workflow
Figure 2 shows the high-level workflow and overall pipeline of
integrative pathway analysis methods. These methods typically
consist of two analysis phases: (i) data processing and stan-
dardization (pre-analysis), and (ii) data integration and pathway
analysis (integrative pathway analysis).

During the pre-analysis phase, the input data are processed to
become suitable for integrative pathway analysis. Pre-analysis
includes an ID mapping module that maps the input omics
features to the gene/compound IDs presented in the pathways.
Next, a data filtering module is designed to perform data quality
control and noise reduction. Two optional modules can be also
provided: data matching and pathway augmentation. In the data
matching module, all expression data are matched so that the
final dataset contains either common genes or samples across all
original datasets. In the pathway augmentation module, validated
multi-omics interactions (e.g. microRNA–gene interactions) are
added to the pathway. This module is particularly important for
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Table 1. Availability of 32 integrative pathway analysis approaches. The � and � in the Availability column indicate whether the
methods are available at the time of writing this manuscript. The term ‘Web’ in the Platform column indicates whether the tool has a
web-based graphical user interface. R, MATLAB, and Java terms indicate the programming languages used to implement the package.
The three last columns, Year, Reference and Citation, indicate the year of publication, reference to the article and the number of citations

Method URL Platform Avail. Year Ref. Cit.

Gene-level, P-value-based integrative approaches

KaPPA-View http://kpv.kazusa.or.jp/ Web � 2005 [45] 175
MAPE https://cran.r-project.org/web/packages/MetaPath/ R � 2010 [46] 98
CancerMA NA Web � 2012 [42] 34
INMEX https://www.networkanalyst.ca/ Web � 2013 [47] 166
3Omics https://3omics.cmdm.tw/ Web � 2013 [48] 136
IncroMAP http://www.cogsys.cs.uni-tuebingen.de/software/InCroMAP/ Java � 2014 [49] 47
ActivePathways https://github.com/reimandlab/ActivePathways R � 2020 [50] 67
mitch https://bioconductor.org/packages/release/bioc/html/mitch.html R � 2020 [51] 14
iODA http://www.sysbio.org.cn/iODA/ Java � 2020 [52] 3

Pathway-level, P-value-based integrative approaches

IMPaLA http://impala.molgen.mpg.de/ Web � 2011 [53] 322
iPEAP https://drive.google.com/drive/folders/1w2RivUThk1uIqNOLz6BT1KVVrokWr2xp Java � 2013 [54] 38
MarVis-Pathway http://marvis.gobics.de/ MATLAB � 2014 [55] 75
BLMA https://bioconductor.org/packages/release/bioc/html/BLMA.html R � 2015 [56] 26
GeneTrail2 https://genetrail2.bioinf.uni-sb.de/ Web � 2016 [57] 137
DANUBE NA R � 2017 [43] 21
Mergeomics http://mergeomics.research.idre.ucla.edu/ Web/R � 2016 [58] 70
Pathview https://pathview.uncc.edu/ Web/R � 2017 [59] 203
PaintOmics 3 http://www.paintomics.org/ Web � 2018 [60] 126
ReactomeGSA https://reactome.org/ Web/R � 2020 [61] 55
multiGSEA https://bioconductor.org/packages/release/bioc/html/multiGSEA.html R � 2020 [62] 20
pathwayMultiomics https://github.com/TransBioInfoLab/pathwayMultiomics R � 2021 [63] 1
CPA http://cpa.tinnguyen-lab.com Web � 2021 [64] 9
clusterProfiler 4.0 https://bioconductor.org/packages/clusterProfiler/ R � 2021 [65] 532

Graph-transformation-based approaches

PARADIGM http://paradigm.five3genomics.com Web � 2010 [66] 792
Subpathway-GM http://www2.uaem.mx/r-mirror/web/packages/iSubpathwayMiner/ R � 2013 [67] 110
microGraphite http://romualdi.bio.unipd.it/micrographite R � 2014 [68] 45
mirIntegrator http://bit.ly/mirIntegrator/ R � 2017 [69] 15
MOSClip https://cavei.github.io/MOSClip/ R � 2019 [70] 10
IMPRes-Pro http://digbio.missouri.edu/impres Web � 2020 [71] 5
rPAC NA NA � 2022 [44] 3

Machine-learning-based approaches

GSOA https://bitbucket.org/srp33/gsoa/src/master/ R � 2015 [72] 13
pathwayPCA https://bioconductor.org/packages/release/bioc/html/pathwayPCA.html R � 2019 [73] 6

methods that take into consideration interactions among genes
and multi-omics layers.

The integrative pathway analysis phase is typically for iden-
tifying pathways that are significantly enriched. Most methods
perform differential analysis for each data type or dataset and
then combine them at the gene- or pathway-level to obtain an
overall enrichment score for each pathway. These scores are often
compared against the null distributions to obtain the P-values
that represent statistical significance of the pathways.

Pre-analysis
Input data processing and filtering
The input of the surveyed methods includes: (i) omics expression
matrices in .CSV format, in which rows represent genes/markers
and columns represent samples/patients, and (ii) pathways
matrix in the GMT format if the pathways are not embedded
in the software. The analysis begins with quality control and data
filtering.

The quality control step typically checks for the consistency
of class labels across all datasets, the validity of gene/compound
IDs and the correctness of data format. Some methods also detect
outliers or perform additional checks depending on the type of
omics data they support. The data filtering step aims at reducing
the number of irrelevant features. To reduce the number of omics
markers, most methods remove data points with low quality. The
majority of methods also remove pathways that have too few
genes measured. The three methods, CancerMA [42], GSOA [72]
and MOSClip [70], also perform additional data filtering to suit
their purpose. CancerMA only keeps cancer-related genes because
it is designed for system-level analysis of 80 cancer datasets.
GSOA and MOSClip filter out genes that do not belong to the
pathways/conditions of interest.

Identifier (ID) mapping
At the abstract level, a pathway consists of multiple genes
that work together to achieve a certain biological function. The
challenge is that the same gene has different IDs in assaying
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Table 2. Comparison of the 32 surveyed methods in terms of the supported omics types, meta-analysis, embedded pathways
databases and mapping unit. The majority of these methods can integrate transcriptomic data with genomic, epigenomic, proteomic
and metabolomic data. Among these, 19 methods are capable of performing meta-analysis (multi-cohort analysis). Further, 22 have
embedded databases and thus allow users to analyze their data without the need of providing pathway/gene set information. Most
methods also automatically map the gene/compound IDs of the expression data to the gene/compound IDs presented in the
pathways. The column ‘Inter. Visual.’ indicates whether the tool has an interactive interface. Six methods provide interactive pathway
diagram that allow users to interactively explore the results and inspect the statistics obtained in each omics analysis

Method Type of omic data Meta-
analysis

Built-in
Database

ID Mapping Inter.
Visual.

Genome Transcriptome Epigenome Proteome Metabolome Manual Built-in

Gene-level, P-value-based integrative approaches

KaPPA-View � � KEGG, BioCyc � �
MAPE � � �
CancerMA � � GO �
INMEX � � � KEGG, GO �
3Omics � � � KEGG, BioCyc � �
InCroMAP � � � � � KEGG, Reactome,

BioCarta
� �

ActivePathways � � � � � � �
mitch � � � � �
iODA � � � � KEGG �

Pathway-level, P-value-based integrative approaches

IMPaLA � � �

KEGG, Reactome,
WikiPathways,

NCI-PID, Biocarta,
PharmaGKBB,
INOH, EHMN,

NetPath, SMPDB,
BioCyc

�

iPEAP � � � � KEGG �
MarVis-Pathway � � � KEGG, BioCyc �
BLMA � � KEGG �

GeneTrail2 � � � � �

KEGG, Reactome,
WikiPathways,

BioCarta, NCI-PID,
PharmGKB,

SignaLink, GO,
SMPDB

�

DANUBE � � �
Mergeomics � � � � � �
Pathview � � � KEGG � � �
PaintOmics 3 � � � � � � KEGG � � �
ReactomeGSA � � � Reactome �

multiGSEA � � �
KEGG, Reactome,

PharmGKB, BioCyc,
SMPDB, Panther,

Biocarta, NCI-PID

� �

pathwayMultiomics � � � � � � �
CPA � � KEGG, GO � �
clusterProfiler 4.0 � � � KEGG, GO,

WikiPathways
� �

Graph-transformation-based approaches

PARADIGM � � � NCI-PID �
Subpathway-GM � � KEGG �
microGraphite � � KEGG, Reactome,

NCI-PID, BioCarta
�

mirIntegrator � � KEGG, miRTarBase �
MOSClip � � � �
IMPRes-Pro � � KEGG, STRING,

TRRUST
� �

rPAC � � �

Machine-learning-based approaches

GSOA � � � � � �
PathwayPCA � � � �
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Figure 2. The high-level workflow of the surveyed approaches for integrative pathway analysis. The modules commonly present in every analysis pipeline
are depicted as solid-line boxes. The dashed boxes are optional modules. The analysis process starts with processing input data (multiple multi-omics
datasets). The methods first perform an integrity check to ensure the consistency among the input matrices and then map the gene/compound IDs
to supported IDs of pathway databases. After pre-analysis, the methods perform differential analysis at the gene-level and then identify significant
pathways using statistical hypothesis testing. The output often includes pathway P-values, enrichment scores and visualization plots.

platforms, pathway databases and omics layers. Crucially, ID
mapping aims to integrate multi-omics data with pathway
information available from different databases. Most methods
perform ID mapping by either requiring users to import a mapping
file, automatically mapping the IDs using a built-in mapping
database, or providing both options. A complete description of

supported databases and mapping IDs of all methods is provided
in Supplementary Table S1.

Data matching
After importing input datasets, an optional data matching process
can be employed to match or integrate the input expression
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matrices. Five methods implement this module in their pre-
analysis phase: CancerMA [42], mitch [51], MarVis-Pathway [55],
MOSClip [70], GSOA [72]. CancerMA and mitch match the gene
IDs across all expression matrices, whereas MarVis-Pathway,
MOSClip, and GSOA match the sample/patient ID across all input
matrices.

Pathway augmentation
The ID mapping step often leads to a one-to-many scenario where
multiple IDs can represent the same gene in a pathway. For exam-
ple, one single gene can code for several distinct proteins due to
the alternative RNA splicing process during gene expression. Sim-
ilarly, an miRNA might target several genes, or multiple miRNAs
target a gene. Integrative pathway analysis methods address this
challenge by either: (i) treating the duplicated gene IDs as indi-
vidual data points or (ii) choosing the optimal data point among
all candidates. Regardless, both solutions result in substantial
information loss. To alleviate this issue, mirIntegrator [69] and
microGraphite [68] augment the pathways to include all entities
instead of merging them to a single gene node. Specifically, they
utilize validated/predicted microRNA/target interactions and add
each interaction to a pathway if the microRNA targets a gene of
the pathway. The augmentation process leads to a more com-
prehensive representation of biological pathways and interaction
networks.

Multi-cohort analysis
Over the years, a research group might have collected many
datasets from different sets of samples (or patient cohorts) for a
specific condition/disease. As technologies change, the assaying
platforms and data types of each cohort may differ. One example
scenario is as follows: (i) first dataset/cohort has gene expression,
(ii) second dataset has gene expression and methylation and (iii)
third cohort has gene expression and copy number variation.
Even for the same omic type, the data can be generated from
different platforms, including microarray and sequencing tech-
nologies. Depending on the analysis purpose, users can choose an
appropriate method based on the information provided in Table 2.

The gene-level integrative approaches often combine the
P-values of genes obtained from multiple datasets before
performing pathway analysis. These methods typically remove
genes that do not appear in all experiments. In other words,
these methods are suitable only when the genes/features are
consistently measured in all datasets. Note that P-value is a
standardized and scaled metric, i.e. P-values are uniformly
distributed between 0 and 1 under the null hypothesis regardless
of data scaling and assaying platforms. Therefore, these methods
can integrate data of different platforms as long as the P-values
are computed correctly in each dataset and that each dataset
measures a similar set of markers/genes. Table 2 also shows the
types of data each method was designed and tested on. In particu-
lar, MAPE and CancerMA were designed for gene expression, while
INMEX, InCroMAP, ActivePathways, mitch and iODA can analyze
other types of data. Note that the two methods, KaPPA-View and
3Omics, in this category are not capable of multi-cohort analysis.

When different cohorts measure different sets of markers,
users can choose among the approaches that integrate the
data at the pathway-level: 10 meta-analysis methods in the
pathway-level integration category (MarVis-Pathway, BLMA,
GeneTrail2, DANUBE, Mergeomics, PaintOmics 3, ReactomeGSA,
pathwayMultiomics, CPA and clusterProfiler 4.0), plus rPAC
and PathwayPCA. These methods first analyze each dataset
independently to calculate the P-values of each pathway and

then combine the statistics (e.g. P-values) of the pathways across
multiple cohorts. As the set of pathways is the same in each
analysis, the integration at the pathway-level can almost always
be performed regardless of the data type and assaying platforms
being used. Compared with gene-level integration, pathway-level
integrative approaches are more flexible as they do not require
each dataset to measure similar markers. However, as they focus
on pathway-level integration, these approaches are not capable of
identifying the genes/markers that are consistently differentially
expressed across the cohorts. The pros and cons of each category
will be further discussed in the next sections.

Integrative pathway analysis
The pre-analysis phase prepares the data for the integrative path-
way analysis phase. The 32 methods utilize different integrative
techniques and hypothesis testing methods to identify pathways
that are significantly different between the compared pheno-
types. In the following text, we will provide a comprehensive
review of these methods as follows: (i) providing a high-level
description of each method, (ii) categorizing them according to
their analysis techniques and purposes and (iii) providing a high-
level assessment of the strategic advantages and disadvantages
of each category.

At the high-level, integrative pathway analysis consists of two
main steps: (i) computing the summary statistics for the genes/-
markers, and (ii) performing hypothesis testing at the pathway-
level to identify pathways that are significantly different between
two phenotypes (e.g. disease versus control, or treated versus
untreated). In the first step, these methods perform differential
analysis to compute summary statistics for omics features in the
experiments [90]. In the second step, integrative pathway analysis
methods compute a summary statistic from omics scores of genes
belonging to a pathway. Next, a statistical significance test is
performed to assess how likely the computed statistic is observed
by chance (P-value). Therefore, an enrichment score and a P-value
for each pathway are obtained at this step, showing whether a
pathway is associated with a disease phenotype. Depending on
the assumption and strategy of each method, data integration (of
multiple cohorts and multiple omics types) is performed in the
first or second step.

Overall, the surveyed methods are divided into four categories
based on their strategy used for analysis and data integra-
tion: (i) gene-level, P-value-based integrative approaches, (ii)
pathway-level, P-value-based integrative methods, (iii) graph-
transformation-based techniques and (iv) machine-learning-
based approaches. Characteristics of each category will be
described in the following sections.

Gene-level, P-value-based integrative approaches
Figure 3 shows the overall pipeline of these methods. Methods
in this category include KaPPA-View [45], MAPE [46], CancerMA
[42], INMEX [47], 3Omics [48], InCroMAP [49], ActivePathways [50],
mitch [51] and iODA [52]. Consider a readout as the measure-
ment/expression of a single omics data in a dataset (e.g. gene
expression data of an experiment/dataset). The input of inte-
grative pathway analysis approaches typically includes multiple
readouts (from multiple datasets of different omics types). In
each readout, rows typically represent genes/features, whereas
columns represent samples. The samples are divided into two
groups: disease versus control (phenotypes). Approaches in this
category start by analyzing each readout independently to com-
pute the P-value and effect size of each gene. For each gene, these
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Figure 3. Overall pipeline of gene-level, P-value-based integrative approaches. The input includes multi-omics and/or multi-cohort data that compare
two phenotypes. Methods in this category first analyze each readout independently to obtain the gene-level P-values and effect sizes (e.g. log fold-
change). For each gene, the methods combine the P-values and effect sizes across multiple readouts to obtain the summary P-value and effect size of
the gene. Finally, these approaches perform functional analysis using the summary P-values and statistics to identify pathways that are significantly
different between the two phenotypes. The output of these methods typically include the P-values and enrichment scores of the pathways.

methods combine the P-values and statistics across all readouts
to compute a summary P-value and statistics that represent
the overall difference of the gene between the two phenotypes.
These summary statistics of the genes then serve as input for
enrichment methods to calculate the P-values and enrichment
scores of pathways.

There are two main techniques that can be used to combine
the P-values: quantile-based combination and ranked-based
combination. Given multiple P-values for a gene pi-s, quantile-
based methods often transform the P-values into distributional
quantiles [91], e.g. qi = F−1(pi). These methods then combine the
quantiles to obtain the aggregated quantile, e.g. Q = ∑

k qi. The
meta P-value is then computed by comparing the observed Q-
value against its empirical or theoretical distribution. In contrast,
ranked-based methods first order the P-values, i.e. p(1) � p(2) �
... � p(k), and then combine them using rank aggregation methods
[92–95].

KaPPA-View allows users to visualize metabolomics and
transcriptomics to analyze plant metabolic pathways. The
software displays quantitative data changes for individual
transcripts and metabolites between different experimental
conditions on the same metabolic pathway maps. Furthermore,
gene-to-gene and/or metabolite-to-metabolite relationships such
as co-expression correlations of genes can be displayed as edges
on a metabolic pathway graph.

MAPE performs meta-analysis by combining the P-values
obtained from each input mRNA datasets. The combination is
performed at both the gene-level (MAPE-G) and the pathway-level
(MAPE-P). MAPE-G first computes the t-statistic for each gene in
each study and then calculates the P-value using permutation
test. For each gene, MAPE-G then combines the individual P-
values across multiple studies using the MaxP algorithm [93] to
obtain one single P-value for the gene. Finally, given the combined
P-values and statistics obtained from each gene, MAPE-G then
performs a Kolmogorov–Smirnov (KS) test to calculate the P-value
for each pathway. In contrast to MAPE-G, MAPE-P combines the P-
values at the pathway-level. In each study, MAPE-P first computes
the t-statistic for each gene and then calculates the P-value for
the gene using the permutation test. It then calculates the P-
values for the pathways using the KS-test. MAPE-P then combines
the P-values of a pathway across all studies using MaxP. Finally,
MAPE-I combines the obtained P-values from MAPE-G and MAPE-
P modules using MinP [92].

CancerMA was designed to analyze 80 cancer-specific gene
expression datasets. This method first performs differential
analysis in each dataset and then combines the P-values using
Stouffer’s method [96]. CancerMA also integrates the logFC-
s using weighted linear combination [97]. By determining the
differentially expressed (DE) genes based on these integrated

statistics, CancerMA then performs an ORA [1] to calculate the
P-values of GO terms.

INMEX implements differential analysis and then applies one
of the five strategies to combine the computed gene P-values
across readouts: combining P-values (Fisher’s and Stouffer’s
methods), combining standardized differences, combining rank
orders, vote-counting and direct data merge. After obtaining the
combined P-values for the genes, INMEX calculates the P-values
of the pathways using ORA or GSEA [98].

3Omics supports the analysis of proteomics, transcriptomics
and metabolomics using five major modules: correlation analysis,
co-expression analysis, pathway enrichment analysis and pheno-
typic analysis. Correlation and co-expression modules visualize
connectivity and heatmaps of the two omics types. The pathway
enrichment analysis component can be applied in two modes
(normal and enriched). The normal mode displays user-provided
metabolites via simple metabolite mapping to a pathway from the
pathway databases. In the enriched mode, the tool compares two
conditions to obtain the set of DE genes and enriched pathways
using ORA.

InCroMAP first applies a threshold to identify the DE genes
in each readout (using fold change or P-values). Then the
intersection or union of identified DE genes are considered for
pathway enrichment analysis using ORA. This tool provides two
comprehensive visualizations, metabolic and pathway views. The
metabolic view generates an interactive global map of cellular
metabolism. The pathway view shows the integrated pathway-
based data visualization from multiple omics platforms.

ActivePathways accepts a matrix of P-values with rows rep-
resenting common genes across multiple datasets/cohort, and
columns related to each omics dataset. Next, considering the
dependency between omics, the P-values for each gene are com-
bined across the datasets using Brown’s method [99], which is an
extension of Fisher’s method (combining independent P-values).
As a result, a list of combined P-values is generated, which is
further used to identify DE genes. From the list of DE genes,
this method performs a ranked ORA to compute the P-values for
the pathways. The method also adjusts the P-values using the
Bonferroni method. Pathways with adjusted P-values smaller than
5% are considered significant. The same process is also applied for
each dataset to get multiple P-values for a pathway—one for each
analysis. The output of ActivePathways is a table of pathways that
are significant in at least one of the analyses. This table serves as
the input of another module, named Enrichment Map [100] from
Cytoscape software package [101], for the visualization of pathway
analysis and data integration.

The mitch method is capable of integrating multi-cohort
and multi-omics data. This method allows users to import
DE genes and their statistics. Otherwise, this tool computes a
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directional significance score (D) for each marker defined as:
D = − log10(P-value) × sign(log2 FC). After ranking genes, this
method divides the genes in the rank list into two groups: (i) genes
that belong to the pathway and (ii) the remaining genes. For each
dataset, this results in two vectors: ranking of genes belonging
to the pathway and ranking of the remaining genes. Multivariate
ANalysis Of VAriance (MANOVA) [102] is then applied to test for
the difference between the two groups to calculate the P-values
of the pathways. Furthermore, mitch returns an enrichment score
for each pathway based on the average ranking of genes in the
pathway.

iODA supports the analysis of transcriptome profiles (mRNA
or miRNA expression data) and protein–DNA interactions (ChIP-
Seq data). For each dataset, iODA applies six statistical methods
to compute the P-values at the gene-level. These methods include
Least Sum of Ordered Subset Squared (LSOSS) [103], Cancer Out-
lier Profile Analysis (COPA) [104], Maximum Ordered Subset T-
statistics (MOST) [105], Outlier Robust T-statistics (ORT) [106],
Outlier Sum (OS) [107] and the t-test. A gene is considered DE if
four or more statistical methods report the gene as significant.
The MACS [108] model is used by iODA to find significant peaks
of the protein binding site in ChIP-seq data. The binding sites
are then assigned to the target genes using the PeakAnalyzer
[109] tool. iODA then uses two alternative strategies for pathway
analysis: (i) intersecting the DE genes from all data types and
then calculating the P-values of the pathways using ORA, or (ii)
performing pathway analysis for each data type, then intersecting
the significant pathways to obtain the final list.

Overall, this category provides the flexibility in adding
multiple omics layers into the pathway analysis. Given that
all omics markers, which match the same gene, affect the
disease phenotype uniformly, the methods use well-formulated
algorithms to combine the P-values and effect sizes from multiple
readouts. Moreover, they are usually fast because pathway
analysis is performed only once regardless of the number of
inputs. However, they require the same set of genes across
different omics datasets. Therefore, this approach may lose some
important information, such as some genes may have crucial
effects on pathway regulation, but they are excluded in one of the
omics layers. Also, the gene statistics calculation in this approach
fails to consider the topology among omics markers in the same
omics layer other than transcriptomics.

Pathway-level, P-value-based integrative
approaches
Figure 3 shows the overall workflow of pathway-level, P-value-
based integrative approaches. Methods in this category include
IMPaLA [53], iPEAP [54], MarVis-Pathway [55], BLMA [56], DANUBE
[43], GeneTrail2 [57], Mergeomics [58], Pathview [59], PaintOmics 3
[60], ReactomeGSA [61], multiGSEA [62], pathwayMultiomics [63],
CPA [64] and clusterProfiler 4.0 [65].

In contrast to gene-level integration, the methods in this cate-
gory, for each readout, first perform differential analysis to obtain
the gene-level statistics (P-values and effect sizes) and then per-
form pathway analysis using the gene-level statistics to calculate
the P-values and enrichment scores for the pathways. Finally, for
each pathway, these methods combine the P-values and enrich-
ment scores from all readouts to compute a single P-value and
enrichment score.

IMPaLA supports analyzing metabolomics and transcrip-
tomics. This tool allows users to analyze each data type
independently using ORA or Wilcoxon Enrichment Analysis (WEA)

[110]. In the end, IMPaLA combines the two P-values into one
single P-value by multiplying them.

iPEAP applies an existing pathway analysis method [1, 98, 111–
113] on KEGG pathways for each dataset. This step returns mul-
tiple ranked lists of pathways. iPEAP then combines these ranked
lists into one single rank list using the following techniques:
RankAggreg, RobustRankAggre, min, median and mean.

MarVis-Pathway executes three types of enrichment analysis:
entry-based, marker/feature-based and sample-based. The entry-
based analysis is analogous to ORA. The marker/feature-based
analysis ranks the features and then computes the pathway P-
value using an iterative hypergeometric test [114], a rank-sum
[115] or a KS test from the ranked list. Finally, sample-based anal-
ysis operates similarly to GSEA. Accordingly, the corresponding P-
values for each pathway are returned. These P-values are then
combined using Fisher’s [116] or Stouffer’s [96] method to produce
a meta-P-value for each pathway.

BLMA was developed for the meta-analysis of multiple tran-
scriptome datasets. The software allows users to perform path-
way analysis on each dataset by multiple methods, including
ORA [1], GSA [117], PADOG [118] and Impact Analysis [15]. For a
chosen pathway analysis method, each pathway will therefore
have multiple P-values—one per dataset. For each pathway, users
can combine the P-values one of many techniques, including
addCLT [56], Fisher’s [116], Stouffer’s [96], minP [92] or maxP [93]
methods. The output of the software includes results of the data
integration, as well as the results of each dataset.

DANUBE is based on the fact that pathway analysis often
provides biased results toward well-studied conditions, e.g. cancer
or Alzheimer’s disease. This meta-analysis approach attempts
to correct for method bias and integration of multiple mRNA
datasets. To perform pathway analysis on each dataset, DANUBE
uses one of the four techniques: GSEA, GSA, IA and PADOG.
It then uses the empirical distributions to correct the P-values
obtained for each pathway. After bias correction, each pathway
has multiple P-values—one per dataset. Finally, DANUBE com-
bines the resulted P-values using the addCLT method for each
pathway.

GeneTrail2 is a web service that allows users to perform path-
way analysis on each input separately, using one of these options:
weighted/unweighted KS-test, Wilcoxon test, ORA, sum, mean,
median, maxmean statistics and t-test. The significant pathways
and their enrichment scores can be viewed online. Furthermore,
for data integration, two view modes are available. The union
mode displays pathways that are significant in at least one data
type. The intersection mode only displays pathways that are
significant in all data types.

Mergeomics consists of two independent modules: Marker Set
Enrichment Analysis (MSEA) and weighted Key Driver Analysis
(wKDA). MSEA focuses on identifying enriched pathways in each
dataset. This approach is similar to ORA: if there are more DE
genes in a pathway than what can be expected by chance, then
the pathway is likely to be enriched. Chi-square-like statistics
is calculated to test this assumption, and a permutation test is
performed to retrieve the P-value for each pathway. MSEA allows
users to analyze a single dataset, as well as to perform meta-
analysis of multiple datasets (named ‘meta-MSEA’). The meta-
MSEA first calculates the P-values obtained from each dataset for
each pathway and then combines these P-values using Stouffer’s
method [96] to obtain a single P-value for the pathway. wKDA
focuses on identifying genes that are the potential key drivers of
the enriched pathways. Mergeomics outputs enriched pathways
and their potential key drivers.
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Figure 4. Overall pipeline of pathway-level, P-value-based integrative approaches. These methods first analyze each readout independently to calculate
the P-values and statistics of each pathway in each readout. Next, the obtained P-values and statistics across all input datasets are combined to obtain
the summary P-value and effect size for each pathway.

Pathview uses GAGE [119] (for expression data) and ORA (for
compound IDs) to calculate the P-values of the pathways. This
tool visualizes the pathway graphs with user data mapped in two
views, the native KEGG pathway view and Graphviz [120] view.
Graphviz view provides better control over node/edge attributes
and a better view of graph topology.

PaintOmics 3 analyzes a range of different omics types: gene
expression, metabolomics, region-based omics like ChIP-seq,
DNase-seq, ATAC-seq, Methyl-seq, etc. and regulatory-based
omics like miRNAs, transcription factors or other factors. This
tool calculates the P-value for each pathway in each dataset using
ORA and then combines the P-values for each pathway using
Stouffer’s or weighted Fisher’s method. This tool provides three
modules for visualizing the analysis results. In the first module,
a pie chart and hierarchical structure show that KEGG pathways
are organized in seven main classifications (Cellular Processes,
Drug Development, Environmental Information Processing,
Genetic Information Processing, Human Diseases, Metabolism
and Organismal Systems). The second module is a pathways
interaction network, in which the nodes represent pathways and
edges indicate shared features among them. The last module
allows users to explore each pathway by producing an interactive
pathway diagram and a global heatmap with complementary
information.

ReactomeGSA supports pathway analysis using microarray
measurements, raw RNA-Seq and normalized read counts,
proteomics spectral counts and intensity-based quantitative
data. ReactomeGSA applies Camera [121], PADOG [118] or ssGSEA
[122, 123] for pathway analysis on each data type. This tool also
supports the analysis of single-cell RNA-sequencing (scRNA-seq)
data. For this type of data, this tool uses either Seurat [124] or
scater [125] to compute the mean expression of genes within a
cluster. Then, through one of the supported analyzing methods,
one pathway-level expression value per cell cluster is calculated.
The obtained results are then converted to Reactome’s internal
data format to visualize the results. The results from different
analyses can be seen and interactively explored side by side down
to a single gene or protein level.

The multiGSEA software independently executes GSEA on each
input data type, which can be transcriptomics, proteomics and/or
metabolomics. This package allows users to utilize the pathways
definition from eight different databases, including PharmGKB
[81], NCI/Nature Pathway Interaction Database [126], HumanCyc
[127], SMPDB [128], Panther [129], Biocarta [80], KEGG [74, 130,
131] and Reactome [76]. For each pathway, up to three adjusted P-
values and enrichment scores are returned. The method then
combines the pathway’s P-values using Z-method, Stouffer’s,
Fisher’s or Edgington’s method [132].

The pathwayMultiomics method as input, accepts a table
of pathways’ P-values across multi-omics types. This tool,

considering all combinations of pairs of P-values for each
pathway, then picks the maximum P-value in each pair. Next,
among the selected P-values, the minimum P-value is chosen
for that specific pathway. To assess the statistical significance
of chosen MinMax statistic, pathwayMultiomics assumes that all
input P-values are independent, and the MinMax statistic for each
pathway follows a Beta distribution for the rth order statistic.

CPA is a web-based platform that supports multiple inputs
that can be analyzed with multiple methods in a single anal-
ysis [9, 14, 15, 110, 118, 133–135]. With input is a list of DE
genes, ORA/WebGestalt [136] will be used. With input is a pre-
ranked gene list (e.g. gene list with fold change), FGSEA [134], KS-
test [133] and Wilcox-test [137] are the available methods. With
input as an expression matrix, eight methods, including GSEA
[9], GSA [14], FGSEA, PADOG [118], Impact Analysis (IA) [15, 16],
ORA/WebGestalt, KS-test, and Wilcox-test, can be used. This tool
provides an interactive visualization of the analysis results in both
pathway- and gene-level graphs. At the pathway-level, a pathway
is a node sliced into multiple parts corresponding to the analysis
results. At the gene-level, a node is a gene with multiple colored
parts representing the regulation direction of the gene in each
data set.

The last method, clusterProfiler 4.0, allows users to perform
both multi-omics integration (transcriptome and epigenome) and
multi-cohort analysis. The input of the method includes multiple
lists of genes and their statistics obtained from one or multiple
transcriptome/epigenome datasets. The software provides
embedded pathways information from KEGG, GO and WikiPath-
ways, but it also allows users to input their customized pathways.
For each dataset, the method performs pathway analysis using
either ORA or GSEA. For each analysis, the method adjusts the
P-values for multiple comparisons using one of the following
methods: Holm’s, Bofferoni’s, Hochberg’s, Hommel’s, Bonferroni-
Holm or Benjamini-Hochberg’s false discovery rate (FDR). In
addition, the method allows users to compare and contrast the
results obtained from multiple analyses using the compareCluster
function. This function returns a table of pathways with multiple
adjusted P-values—one for each input list. Finally, it further
visualizes the results in a side-by-side graph for comparison
analysis.

In general, these methods confer flexibility in combining mul-
tiple omics significant signals. As a result, the statistical power
of these methods is expected to increase. However, most of the
mentioned statistical tests assume independence between omics
types, which contradicts reality and may negatively affect the
analysis accuracy. A possible solution is considering the meth-
ods that can combine dependent P-values (e.g. Brown’s [99] and
Liptak’s [138]). Another critical pitfall of these methods is that
they neglect the actual expression changes, i.e. effect sizes. This
might result in information loss. Although P-value is influenced
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Figure 5. Overall pipeline of graph-transformation-based integrative
approaches. These methods first construct pathway networks and then
analyze each readout independently to obtain the summary statistics for
genes and other omics entities. Finally, they perform graph-based analysis
to calculate the P-value and network score for each pathway.

by effect size, it is also greatly affected by sample size [139]. For
datasets with large sample sizes, a test for differential expression
will almost always result in a significant P-value, unless the effect
size is zero, which is very unlikely. Simply combining the P-values
would likely produce varying degrees of false discoveries.

Graph-transformation-based approaches
Methods in graph-transformation-based category include
PARADIGM [66], Subpathway-GM [67], microGraphite [68],
mirIntegrator [69], MOSClip [70], IMPRes-Pro [71] and rPAC [44].
Figure 5 shows the overall pipeline of these methods. Approaches
in this category emphasize the point that studying affected genes
and pathways separately may hinder the understanding of the
whole genome-wide picture [71]. These methods utilize different
strategies to construct gene/compound network/graph from
existing knowledge about pathway topology. Consequently, each
pathway is represented as a network of genes and products. They
then perform network-based analysis to identify significantly
different pathways between the two phenotypes.

PARADIGM models each gene as a factor graph of four dif-
ferent biological entities: copy number, gene expression state,
protein level and protein activity. From the input expression data,
PARADIGM computes the scores of the nodes (observed states)
and estimates the probability that a node is positive/active or
negative/inactive. For each pathway, PARADIGM returns a matrix
of states in which columns represent samples and rows represent
nodes in the pathway factor graph. All pathways are ranked based
on the average number of samples in which significant activity
was detected per node.

Subpathway-GM, which is now part of the iSubpathwayMiner
package [140], is capable of integrating gene expression data with
metabolic data to identify metabolic pathways and subgraphs

that are significantly impacted. The method first maps genes and
metabolites to enzyme and metabolite nodes of KEGG pathways.
The genes and metabolites are then referred to as ‘signature
nodes’ of the pathway graph. The method next searches for
shortest paths between signature nodes and then removes nodes
that do not belong to these shortest pathways. Subgraphs with
a number of nodes larger than a pre-defined threshold are con-
sidered important. The method calculates the enrichment score
for each subgraph using the hypergeometric test. The P-value of
the underlying pathway is the smallest P-value of its subgraphs.
The method repeats the above process for all metabolic pathways
to obtain the P-values for all pathways. Finally, Subpathway-GM
outputs the pathways, subgraphs and their P-values.

Both mirIntegrator and microGraphite extend the pathways
to include microRNA–gene interactions. mirIntegrator performs
pathway analysis on the extended pathways using ORA and
Impact Analysis and then combines the P-values of the two types
of evidence using Fisher’s method. In contrast, microGraphite
decomposes the network into fully connected cliques and
calculates their P-values. The method then builds a junction tree,
having nodes as cliques and edges as connectivity, and computes
the scores of every path in the graph. All the top-scored paths
are combined to generate a meta-pathway. In the last step, the
meta-pathway’s paths are analyzed and ranked according to their
involvement in the phenotype. Finally, microGraphite performs a
sample permutation test to estimate the significance (P-value) of
the pathways, meta-pathway, paths and cliques.

MOSClip focuses on identifying pathways or modules asso-
ciated with patient survival. From the pathway graph, MOSClip
generates all possible cliques and performs survival analysis.
For each pathway or clique, MOSClip goes through the following
process: (i) data filtering to keep only the genomic features
that belong to the pathway/module, (ii) dimension reduction,
(iii) data concatenation across data types by patient matching
and (iv) survival analysis using Cox regression [141]. MOSClip
outputs a Cox P-value for each pathway that represents how
likely the pathway is significantly associated with patient
survival.

IMPRes-Pro implements a step-wise active pathway detection
algorithm on the background network. Starting from seed nodes,
the method explores all potential paths that include as many
target nodes as possible. Next, IMPRes-Pro uses the shortest
path algorithm [142] with a customized penalty function to
achieve the optimal pathway network. The algorithm stops
when each node achieves a minimum penalty score. The
final active pathway network is detected by truncating and
backtracking.

The rPAC software is designed to find routes of a pathway
highly associated with the disease. Routes are portions of a path-
way that typically involve a transcription factor. The computed
scores for each route are: (i) activity scores based on the down
or up-regulation of that route, (ii) the rate that a route is altered
within a cohort and (iii) the average of yielded activity scores of
a route within all samples in a cohort. The P-values for routes
are computed by testing a two-tailed hypothesis based on the
scores.

The graph-transformation-based approaches have significant
advantages over enrichment methods. They account for pathway
topology and multi-omics interactions by modeling pathways as
networks of genes and their products. As a great result, these
methods present the option to identify active subnetworks, which
would have more explanatory power and decrease the domain
of research to the subset of biological components. Adding more
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Figure 6. Overall pipeline of machine-learning-based approaches. For a given pathway, these methods filter the multi-omics data to keep only genes
belonging to the pathway. Next, these methods classify each sample using the expression data and assess the accuracy using the area under the receiver
operating characteristic curve (AUC). The P-value of the pathway is calculated by comparing the obtained AUC to its empirical distribution constructed
under the null.

layers of omics might, however, result in a complex network that
necessitates a significant amount of effort in terms of implemen-
tation and analysis.

Machine-learning-based approaches
Figure 6 shows the high-level description of machine-learning-
based approaches. Methods in this category include GSOA [72]
and PathwayPCA [73]. These methods apply machine learning
techniques together with multi-omics data integration to identify
the pathways strongly associated with the phenotype. The main
idea is to classify samples using the genes that belong to each
pathway. Next, the performance of the classification is assessed,
and the importance of a pathway is assessed based on how well
we can separate disease and healthy samples using the genes in
the pathway.

GSOA starts with merging multi-omics data into a single data
frame and then performs, by default, radial basis function support
vector machine kernel (RBF SVM Kernel) [143] classification using
the genes belonging to each pathway. GSOA then assesses the
prediction accuracy by calculating the area under the receiver
operating characteristic curve (AUC). Then, for each pathway, a
P-value is calculated using the empirical null distribution of the
AUC values.

PathwayPCA [73] extends two existing methods, AES-PCA [144]
and SuperPCA [145], to perform pathway analysis and data inte-
gration. AES-PCA first performs dimension reduction and com-
putes the latent variables for each data type and each pathway.
For a given data type, the latent variables are evaluated against
the phenotype either by using a regression model g(phenotype) =
alpha+betaPC1 (default), or by using a link function g() that varies
depending on the response variable (i.e. Cox Proportional Hazards,
identity and logit link functions for survival, continuous and
binary response variables, respectively). SuperPCA differs from
AES-PCA by using the sample label to filter out genes that are not
strongly associated with the underlying condition. PathwayPCA
extends these methods to combine the results by intersecting the
set of significant pathways from each readout. In addition, Path-
wayPCA implements some functions to present other information
such as the obtained values for each principal components in
each sample and the loading values corresponding to each gene.

One key advantage of machine-learning-based approaches is
that users can incorporate many machine learning techniques
into pathway analysis. Many of these techniques are publicly
available and thus, require minimal implementation. However,
the machine learning algorithms have some disadvantages in
the scope of pathway analysis, including (i) the lack of means
to take into consideration interactions among omics layers,

(ii) the dependency on the chosen machine learning algorithm
and parameters and (iii) computational burden due to repeated
classifications, i.e. classification is performed for each pathway.

Method assessment
Figure 7 shows the quality assessment of the 32 surveyed
methods using the following criteria: (i) validation, (ii) stability,
(iii) installation, (iv) user-friendliness, (v) documentation and (vi)
tutorial. For each criterion, a method is scored from one (worst)
to five (best). Overall, there are 12 methods that have an average
score above 4.0. These include ReactomeGSA, ActivePathways,
PaintOmics 3, mitch, BLMA, PathwayPCA, Mergeomics, iODA,
Subpathway-GM, multiGSEA, CPA and MAPE. Among these, five
are GUI tools (ReactomeGSA, PaintOmics 3, Mergeomics, iODA
and CPA), while the remaining are stand-alone packages. The
details of the assigned scores for each method are provided in
Supplementary Table S2.

First, the validation metric refers to the quality of the validation
reported in the original paper of each method. A method is scored
five if the corresponding paper presents an in-depth analysis
using at least two case studies of high-quality, real datasets. We
deduct points if the reported validation has low quality or only
has one case study. Further, if a method is not validated at all,
the validation score is one. Note that most methods provide at
least one real case study except InCroMAP, clusterProfiler4.0 and
INMEX.

Second, the stability metric indicates how stable the methods
are. In order words, this metric assesses how smoothly a method
executes an analysis without crashing or having bugs/errors.
For each method, we create datasets that are compatible with
the input required by each tool. For example, an input object
of multiGSEA can have up to three types of data as this
software supports the integration of transcriptome, proteome
and metabolome. For each method, we create 10 such datasets of
different sizes (genes and samples) and execute them to quantify
their stability and investigate whether they have bugs, errors or
crashes. If any unexpected problem happens during running or
any failure arises in different modules of a tool, we lower the score.
As shown in the plot, most methods can complete their analysis
without problems. For tools that are not available at the time of
writing this review (e.g. PARADIGM, rPAC, DANUBE CancerMA), we
consider a score of one.

Third, the installation metric refers to how straightforward it
is to install a package or software. Most of the available methods
have a high score in this metric. We deduct points for some meth-
ods (e.g. GSOA, microGraphite, mirIntegrator, MOSClip) because
they require users to manually install many packages that can
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Figure 7. Assessment of 32 surveyed methods in terms of the validation, stability, installation, user friendliness, documentation and tutorial. The
score of each metric ranges from one ( ) to five ( ). Each metric has a different color. The methods are sorted according to their average score in an
ascending order. The horizontal axis shows the average score for each method. There are 12 methods that have an average score above 4.0: ReactomeGSA,
ActivePathways, PaintOmics 3, mitch, BLMA, PathwayPCA, Mergeomics, iODA, Subpathway-GM, multiGSEA, CPA and MAPE.

potentially cause difficulties. We give a score of one to methods
that cannot be installed, or require components that are not avail-
able anymore. We also give a score of one for tools that are not
available or not accessible at the time of writing this manuscript.

Fourth, the user-friendliness metric shows how the tool is
well designed from users’ perspective. For web-based tools and
software with a graphical user interface (GUI), this metric con-
siders how well the architecture is planned so users can navigate
through different tabs/modules to perform their analysis. Well-
designed GUI tools receive the highest score (five) because they
make it easy for users to analyze, visualize and interactively
explore the results. For tools that do not have GUI, the highest
score they can receive is four. For these methods, the score also
takes into account the capability to plot the results or the efforts
required from users to convert/pass data from one function to
another. ReactomeGSA, PaintOmics 3, iODA, 3Omics, CPA and
InCroMAP have the highest score in this metric.

Fifth, the documentation metric refers to the quality of soft-
ware documentation. It takes into account how well each function
and its parameters are documented for stand-alone software and
how well different tabs/modules are explained for web-based
tools and GUI software. ActivePathways, iODA, ReactomeGSA,
PaintOmics 3, Mergeomics, PathwayPCA, clusterProfiler4.0,
GeneTrail2, INMEX, mitch, InCroMAP and CPA are among the
methods that have high-quality and thorough documentation. At
the same time, microGraphite, pathwayMultiomics, PARADIGM,

GSOA, IMPaLA and 3Omics are methods that do not present any
documentation.

The last metric, tutorial, indicates whether the authors
provided an elaborated, step-by-step tutorial that can be easily
followed by users. ReactomeGSA, PaintOmics 3, ActivePathways,
BLMA, iODA, Mergeomics, PathwayPCA, CPA, multiGSEA, cluster-
Profiler4.0, MOSClip, GeneTrail2, mirIntegrator and INMEX receive
the highest score because they have a high-quality tutorial. In
contrast, GSOA, 3Omics, pathwayMultiomics, MarVis-Pathway,
IMPRes-Pro and PARADIGM receive low scores because they only
provide a brief description of how to perform an analysis. Methods
that are not available/accessible receive a score of one.

Summary and discussion
To provide readers with a comprehensive and compact view, we
summarized the important details of the 32 surveyed methods
in Figure 8. The summary figure emphasizes techniques used in
three core modules for integrative pathway analysis: (i) network
construction, (ii) pathway statistics computation and (iii) statistics
combination. The network construction module refers to the way
each method transforms existing pathways. The next module,
pathway statistics computation, refers to techniques used to
compute pathway statistics, including their enrichment score
and P-value. The third module, statistics combination, provides
the techniques used to combine the statistics across multiple
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readouts. The combination can be performed either at the gene-
level or pathway-level. The last column of the figure represents
the overall performance score for each method (in scale of one
to five as reported in Section Method Assessment). Additionally, the
pros and cons for each category are also provided in the figure.

It is generally accepted that the emergence of a specific phe-
notype is not a straightforward and predetermined process going
from DNA to RNA, to proteins, to downstream biological function,
but rather involves complex interactions of factors playing at dif-
ferent levels (e.g. gene expression, variants, microRNA, long non-
coding RNA and methylation). For instance, integrating miRNA
and mRNA expression profiles results in a better understanding
of disease phenomena, both in biomarker discovery [146–148]
and pathway analysis [32, 149]. DNA methylation has also been
recognized as playing a crucial role in complex diseases [150–153].
There are many other compelling pieces of evidence in mouse, cell
lines and human studies demonstrating that even the integration
of only two types of data (genotype and mRNA) allows one to
successfully connect complex phenotypic traits to inherited and
non-inherited factors [154–159]. In many cases, a multi-omics
strategy is a must for a systematic understanding of affected
pathways [160–162].

Compared with single-omics analysis methods, integrative
pathway analysis approaches offer a number of important
advantages. First, multi-omics integration allows researchers
to observe the full regulatory landscape of pathways from the
regulations that occur in different omics layers. Essentially,
biological pathways involve a range of different biomolecules, and
the flow of information as a response to a specific disease is not
confined to a single-omics layer. Therefore, changes in biological
pathways can only be accurately identified and comprehensively
observed by analyzing multi-omics data. For example, many
signaling pathways include phosphorylation reactions that are
relevant for regulating the activity of proteins and are not
reflected at the transcriptomics level [163]. Hence, analyzing
transcriptome data alone might be insufficient. Second, multi-
omics integration has the potential to reveal the key insights
into underlying pathway mechanisms and uncover the cross-
omics relationships, which cannot be made apparent through
single-omics studies. Many integrative approaches augment the
pathways to obtain a more comprehensive representation of
biological pathways and multi-omics interactions. They account
for pathway topology and multi-omics interactions by modeling
pathways as networks of genes and their products. In this case,
multi-omics integration helps researchers to better connect
genotype to phenotype and provides novel scientific evidence
on disease development, or treatment targets, that can be
then tested in further molecular studies [164, 165]. Finally,
data integration can potentially increase the statistical power
and confidence level of the results [163, 165–167]. All of the
integrative pathway analysis methods surveyed in this article
provide case studies demonstrating the advantages of multi-
omics integration over the analysis of a single omics type or
experiment.

However, we would like to note that it is not always beneficial
to add more omics layers to an analysis. If an omics layer is not
relevant to the underlying condition, adding it to the analysis
can increase noise and thus make the analysis less accurate. In
an attempt to show the differences between single-omics and
multi-omics analysis, Canzler et al. [163] provide an extensive
survey. They used two case studies, mitochondrial response and
murine hepatocyte datasets, to investigate the benefit of multi-
omics integration (transcriptome, proteome and metabolome). In

the mitochondrial study, the multi-omics integration produced
more significant pathways that are relevant to the condition
than analyzing transcriptome alone (single-omics). However, in
the murine hepatocyte dataset, the analysis of transcriptome
data produced more significant pathways that are related to the
underlying condition. This shows that multi-omics integration is
not always the best option in all conditions. Therefore, choosing
the most relevant omics types to include is important before
conducting any kind of integration.

Furthermore, there are some outstanding challenges in the
context of integrative pathway analysis that necessarily need to
be taken into account. First, it should be noted that the accuracy
of all analysis methods is highly dependent on data processing
and quality control. Multi-omics data are stochastic and hetero-
geneous in nature that can be attributed to a variety of factors,
including technical variability (assays and data type), biological
heterogeneity and study bias (sample collection and preparation,
experimental design). These factors can greatly affect the results.
Therefore, having consistency among input omics data in terms
of applied assay, processing protocol and experiment design is
very important. In order to ensure the accuracy of the analysis,
each pathway analysis technique should evaluate the consistency
of the provided data, either through an automatic process or by
requiring users’ acknowledgment.

Second, analysis results also rely on the degree of effectiveness
of each type of omics. It is trivial that biological markers may
be affected by a disease differently, and as a result, the amount
of carried data by each type of omics could vary. However, all
reviewed approaches consider the same weight for all omics
types. This argument can be extended further when the input
sizes between omics are considerably different, i.e. the larger the
dataset, the more information can be extracted. To overcome
this challenge, one can examine how each omics type affects
the studied condition and then, based on the analysis results,
consider a degree of effectiveness or significance for each type
of omics. Some statistical tests have been designed specifically
for this purpose. One such test is weighted Kolmogorov–Smirnov,
which allows for applying a weighting strategy to both the effect
of omics types and different input sample sizes.

Third, the inter-dependency among genes and multi-omics lay-
ers is another critical factor. These dependencies explain the nat-
ural interactions between biological compounds and their omics
layers. Therefore, it is important to consider the omics depen-
dencies in designing the pathway analyzer, as it can substan-
tially improve the quality of omics data processing. Among the
discussed analysis approaches, pathway graph transformation
and visualization categories cover the omics inter-dependencies
and utilize these relations in their analysis. However, despite the
more powerful analysis, the model becomes more complicated.
Therefore, this can be considered a trade-off between the power
of the analysis and its computational complexity.

Fourth, it is undeniable that all of the reviewed approaches
allow for only two experimental conditions. Depending on the
underlying biological process or disease, it may be required in
some experiments to have multiple conditions and study them
simultaneously. One solution is to analyze every combination
of pairs of experimental conditions separately and then merge
the obtained results. Another solution is to search for statistical
approaches that allow for the analysis of multiple conditions and
then extend them to be suitable for analysis.

Fifth, combining different pathway databases has still remained
challenging. The existing knowledge regarding pathway annota-
tions is scattered among pathway databases, yet none of them
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Figure 8. Three core modules of the 32 surveyed methods, their pros and cons, and overall performance score (from one to five). The network construction
module represents all activities performed by each method for expanding/transforming the pathway annotation graph. The statistics computation
module includes techniques employed by each method for computing statistics at the pathway-level. The score combination module includes each
method’s strategy in combining the computed statistics at the gene or pathway-level. Most methods combine the statistics at the pathway-level, except
those in the gene-level integration category. Methods with an asterisk (*) also support pathway-level combination.

alone is complete. Therefore, exploiting the complementary
knowledge available in multiple databases can improve the
accuracy and statistical power. Some of the proposed pathway
analysis methods attempt to merge multiple databases to cover
more information and give users the power to benefit from a

more comprehensive database in their analysis. However, the
major drawback is that each database uses different identifiers
for pathway annotations. Even in some databases, the same
entity (gene, metabolite or protein) is annotated with different
identifiers, causing redundancy in data.
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PathwayCommons [168] is exemplary in this aspect, and it is
one of the few comprehensive human pathway repositories. At
the time of writing this review, this database has aggregated 5,772
pathway annotations and 2,424,055 interactions from 22 distinct
pathway databases, including widely known databases such as
KEGG, Reactome, BioCyc, miRTarBase and MSigDB. In comparison
with the number of pathways in popular pathway databases such
as KEGG (less than 400 pathways) and Reactome (less than 3,000),
the number of pathways in PathwayCommons demonstrates how
extensive this database is. Also, PathwayCommons annotates all
pathways using HGNC or UniProt identifiers; thus, it unifies all the
pathways’ definitions from different repositories. Several pathway
analysis and visualization tools [136, 169, 170] have been devel-
oped based on pathway information from the PathwayCommons
database. However, none of them are yet capable of integrating
multi-omics and/or multi-cohort. Exploring this comprehensive
database can benefit researchers in their future development of
integrative pathway analysis approaches.

Lastly, the ability to interpret the analysis results should be
taken into consideration. Methods with interactive visualization
capability may provide interactive interfaces for representing the
analysis result (as noted in the last column of Table 2). However,
it is still difficult to follow the chains of reactions or signaling
cascades in large networks of hundreds or thousands of nodes.
One solution to alleviate this problem is to generate sub-networks
instead of creating a vast network. Using this strategy, users
can easily follow the interactions and inspect the corresponding
omics layers. Another solution is to provide a three-dimensional
depiction of the entire network. This three-dimensional view will
enable a more immersive interaction with the network. For exam-
ple, users could rotate the perspective to better view the network
components or inspect each part of the network.

Conclusion
In this survey, we systematically review 32 integrative pathway
analysis methods. The overall pipeline of these methods typically
includes data preprocessing, ID mapping, pathway augmenta-
tion, differential analysis, pathway analysis and visualization. We
categorize these multi-omics pathway analysis approaches into
four different categories based on their principal concepts and
techniques: (i) gene-level, P-value-based integration, (ii) pathway-
level, P-value-based integration, (iii) graph-transformation-based
and (iv) machine-learning-based tools. We discuss the pros and
cons of each category, as well as the overall advantages multi-
omics integration over single-omics analysis. We also assess the
practicality of each method using six different metrics. Our main
objective is to help potential users, especially life scientists, to
choose a method that is most suitable for their available data and
analysis purpose. Finally, we identify the shortcomings of existing
approaches with the goal of helping computational scientists to
develop new methods that address the current limitations.

Key Points

• Pathway analysis is important because it provides
insights into the biology underlying phenotypes beyond
the detection of differentially expressed genes or pro-
teins.

• Multi-cohort analysis (meta-analysis) increases statis-
tical power, while multi-omics integration integrates

different types of omics data to understand complex
biological processes that involve multiple omics levels.

• This article reviews and discusses in-depth 32 pathway
analysis methods using multi-cohort and multi-omics
data: their availability, supported databases and omics
types, hypothesis testing techniques and integration
strategies.

• This article points out pros and cons of integrative path-
way analysis methods, as well as assesses each method’s
practicality, and discusses outstanding challenges.

• This article will assist life scientists in selecting suitable
methods for their analysis purposes, as well as compu-
tational scientists in identifying shortcomings of current
methods.
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