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Abstract—Transcript quantification using RNA-seq is central
to contemporary and future transcriptomics research. The
existing tools are useful but have much room for improve-
ment. We present a new statistical model, a fast yet accurate
transcript quantification algorithm. Our tool takes RNA-seq
reads in fasta or fastq format as input and output transcript
abundance through a few mouse clicks. Our method compares
favorably with the existing GUI tools in terms of both time
complexity and accuracy. Availability: Both simulation data
used for method comparisons and the GUI tool are freely
available at http://asammate.sourceforge.net/.
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I. INTRODUCTION

Transcript quantification using RNA-seq is central to a
wide range of transcriptomics research. The problem itself
is challenging due to the fact that the observed exonic
expression signal can be aggregated from a set of sibling
transcripts encoded by the same gene with diverse alternative
splicing mechanisms. In essence, the problem finds its root
in latent variable models where we infer the latent variables
(transcript expression) from the observed variables (exonic
expression).

Several computational approaches have been developed
to utilize high throughput gene expression profiling data
collected from microarray and RNA-seq experiments. In
earlier studies, an iterative Expectation-Maximization (EM)
type of algorithm using Expression Sequence Tags (ESTs)
( [1]) and a Nonnegative Matrix Decomposition (NMF)
based algorithm ( [2]) using exon and exon-exon junction
microarrays were developed to solve this problem. Both
approaches belong to latent variable model family and they
represent some of the more pioneering efforts to tackle the
transcript quantification problem. However, both iterative ap-
proaches suffer from non-unique solutions that are sensitive
to initialization. Moreover, the performance was also limited
by data quantity (ESTs) and quality (microarrays).

RNA-seq technology gives base-level exonic expression
signal with unprecedented dynamic range and sensitivity.
Both data quantity and quality for solving this problem are
substantially improved. Despite a number of approaches to
transcript quantification ( [3]–[8]), few attempt has been
made towards solving the problem using base-level signal.
Bohnert and Ratsch ( [9]) developed a quadratic program-

ming based web tool (rQuant.web) to exploit base-level
expression signal for transcript quantification, but signif-
icant advantages of pursuing this direction are yet to be
demonstrated. In addition, this algorithm does not exploit
the increasing availability of multiple samples (replicates),
which can be used to reduce the effect of random variability.

In this paper, we present a new statistical model, a fast yet
accurate transcript quantification algorithm using base-level
signal and a user-friendly tool with a GUI. Using real-world
simulation studies, we compared our tool with three other
GUI tools in terms of both time complexity and accuracy.

II. METHODS

We propose a new model to explain how the observed
base-level RNA-seq expression signal (observed read cov-
ereage) is aggregated from a mixture of sibling transcripts.
We first introduce the model for a single sample, then we
extend the model to process multiple samples.

Given a set of short reads of a sample, we first align
the reads to the reference genome, then we estimate the
abundance of annotated transcripts per gene locus. We
denote the number of exonic positions by 𝑚. The number
of annotated transcripts is denoted by 𝑛. The vector of
observed read coverage is denoted by e = [𝑒1, 𝑒2, ..., 𝑒𝑚]𝑇

where 𝑒𝑖 is the observed read coverage at the 𝑖𝑡ℎ exonic
position. The gene-level expression abundance is denoted by
𝑟. The gene expression abundance can be estimated either
using read counts (e.g. RPKM) or average base-level exonic
signal over the shared exonic regions among all the sibling
transcripts. The vector of transcript proportions is denoted
by p = [𝑝1, 𝑝2, ..., 𝑝𝑛]

𝑇 where 𝑝𝑗 is the proportion of 𝑗𝑡ℎ

transcript ,
∑𝑛

𝑗=1 𝑝𝑗 = 1 and 0 ≤ 𝑝𝑗 ≤ 1 for all 𝑗. The
splicing matrix can be denoted by S 𝜖 {0, 1}𝑚×𝑛. S is a
matrix of 0’s and 1’s, each row i represents a single base and
each column 𝑗 represents a sibling transcript. 𝑆𝑖𝑗=1 indicates
that the 𝑗𝑡ℎ sibling transcript contributes to the exonic signal
observed at 𝑖𝑡ℎ base, 𝑆𝑖𝑗=0 otherwise.

An example is illustrated by Figure 1. In this example, the
1𝑠𝑡 transcript skips no exon, and thus the all the elements
of the 1𝑠𝑡 column of S take the value of 1 (𝑆𝑗1 = 1
for all 𝑗𝜖[1..𝑚]). In the 2𝑛𝑑 column of S, the elements
corresponding to the 2𝑛𝑑 exon take the value of 0 because
the 2𝑛𝑑 transcript skips the 2𝑛𝑑 exon. In the 3𝑟𝑑 column of
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S, the elements corresponding to the 3𝑟𝑑 exon take the value
of 0 because the 3𝑟𝑑 transcript skips the 3𝑟𝑑 exon.

Figure 1. Transcript abundance estimation using observed read coverage

At each exonic position 𝑖, the expected read coverage
is 𝑟

∑𝑛
𝑗=1 𝑆𝑖𝑗𝑝𝑗 . Our goal is to minimize the difference

between the observed read coverage and the the expected
read coverage. We can write the observed read coverage
as a sum of the expected coverage and error vector (𝜀) as
following:

⎡
⎢⎢⎢⎢⎣

𝑒1
𝑒2
𝑒3
...
𝑒𝑚

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

𝑟(𝑆11𝑝1 + ...+ 𝑆1𝑛𝑝𝑛)
𝑟(𝑆21𝑝1 + ...+ 𝑆2𝑛𝑝𝑛)
𝑟(𝑆31𝑝1 + ...+ 𝑆3𝑛𝑝𝑛)

...
𝑟(𝑆𝑚1𝑝1 + 𝑆...+ 𝑆𝑚𝑛𝑝𝑛)

⎤
⎥⎥⎥⎥⎦+ 𝜀

= 𝑟

⎡
⎢⎢⎢⎢⎣

(𝑆11 + ...+ 𝑆1𝑛)
(𝑆21 + ...+ 𝑆2𝑛)
(𝑆31 + ...+ 𝑆3𝑛)

...
(𝑆𝑚1 + ...+ 𝑆𝑚𝑛)

⎤
⎥⎥⎥⎥⎦×

⎡
⎢⎢⎣

(𝑝1)
(𝑝2)
...
(𝑝𝑛)

⎤
⎥⎥⎦+ 𝜀

So we have the following equation:

e = (𝑟S)× p + 𝜀. (1)

For each gene locus, the relationship between the observed
base-level coverage and the latent transcript proportion can
be modeled as in equation (1), where 𝜀 is the estimation
error. In other words, our algorithm solves the following
constrained linear least square problem:⎧⎨

⎩
minp ∥e − (𝑟S)× p∥2
1𝑇 × p = 1
0 ≤ p ≤ 1

(2)

where 1𝑇 = [1, 1, 1, ...1]︸ ︷︷ ︸
n

In case of multiple samples, the same logic can be
applied to estimate the transcript proportions. For each gene
locus, each sample (replication) has different expression
abundances but share the same transcript proportion vector.
Let 𝑘 be the number of the samples. After proper nor-
malization, we have 𝑘 vectors of observed read coverage:
e1 = [𝑒11, 𝑒12, ..., 𝑒1𝑚]𝑇 , e2 = [𝑒21, 𝑒22, ..., 𝑒2𝑚]𝑇 , ..., e𝑘 =
[𝑒𝑘1, 𝑒𝑘2, ..., 𝑒𝑘𝑚]𝑇 . The gene expression abundances are
denoted by 𝑟1, 𝑟1, ..., 𝑟𝑘. We have 𝑘 equations:⎧⎨

⎩

e1 = (𝑟1S)× p + 𝜀1
e2 = (𝑟2S)× p + 𝜀2
e3 = (𝑟3S)× p + 𝜀3

...
e𝑘 = (𝑟𝑘S)× p + 𝜀𝑘

or ⎡
⎢⎢⎢⎢⎣

e1
e2
e3
...
e𝑘

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

𝑟1S × p
𝑟2S × p
𝑟3S × p

...
𝑟𝑘S × p

⎤
⎥⎥⎥⎥⎦+ 𝜀

where 𝜀 is the error we want to minimize. The equation
above can be rewritten as:⎡

⎢⎢⎢⎢⎣
e1
e2
e3
...
e𝑘

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

𝑟1S
𝑟2S
𝑟3S
...
𝑟𝑘S

⎤
⎥⎥⎥⎥⎦× p + 𝜀 (3)

If we denote y = [e𝑇1 , e𝑇2 , e𝑇3 , ..., e𝑇𝑘 ]
𝑇 and W =

[(𝑟1S𝑇 ), (𝑟2S)𝑇 , (𝑟3S)𝑇 , ..., (𝑟𝑘S)𝑇 )]𝑇 , the transcript pro-
portion can be estimated by solving the following con-
strained linear least square:⎧⎨

⎩
minp ∥y − W × p∥2
1𝑇 × p = 1
0 ≤ p ≤ 1

(4)

where 1𝑇 = [1, 1, 1, ...1]︸ ︷︷ ︸
n

In fact, the optimisation problem described in (4) is the
generalized form of (2), since it formulates the optimisation
problem for one or multiple samples. This is a classic
medium-scale convex quadratic programming, which can be
solved easily by the active set method ( [10]) .

III. RESULTS

Using real-world simulation studies, we demonstrate the
accuracy and speed of iQuant by comparing with RAEM
( [8], implemented in aSAMMate suite) and two widely
used GUI tools, Cufflinks ( [6]) and rQuant ( [9]). We
used FluxSimulator to simulate the whole transcriptome
sequencing experiments with the Illumina Genome Analyzer.
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15 million and 30 million single end reads with length of 50
and 100 were simulated using Ensembl database, including
around 100,000 annotated human transcript structures. To
account for the read errors in real-world data, we estimated
an error model from realworld RNA-seq data sets and
provided as an input for FluxSimulator to simulate reads
with errors( [11]).

A. Time complexity

Table I shows the time complexity on the same hardware
platform (MacPro, two Intel Xeon DualCore 2.66GHz, 4GB
RAM). It is clear from Table I that iQuant is much faster
than its competitors.

Table I
COMPARISON OF RUNNING TIME OF THE FOUR GUI TOOLS

RAEM iQuant Cufflinks rQuant.web
15 millions 3377s 820s 2060s > 1d
30 millions 6610s 1036s 2795s > 1s

B. Accuracy of isoform quantification

We proceed to compare the accuracy of isoform quan-
tification for the four GUI tools. An ultimate goal for
transcriptome quantification is to estimate sibling isoform
abundance proportions, summing up to one for each gene.
From the ground truth where we simulated RNA-seq reads
using FluxSimulator, we know the true copy numbers of all
the isoforms. Thus the more accurate isoform quantification
method will give the vector of isoform proportion least di-
vergent from the ground truth. We used Jensen-Shannon (JS)
divergence to capture both linear and nonlinear relationships.
Values closer to zero indicate a better performance.

Figure 2. Comparison of accuracy using J-S divergence.

From Table I and Figure 2, iQuant demonstrates an
impressive speed without compromise of accuracy.

IV. CONCLUSION

In this paper, we have presented a way to accommodate
multiple samples and thus give rise to a better estimate.
Beside accuracy, our GUI tool also demonstrates an impres-
sive speed. It is particularly important prospectively with the
faster pace of increase in both sequencing depth and sample
size in the near future.
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