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Identification of impacted pathways is an important problem because it allows
us to gain insights into the underlying biology beyond the detection of differ-
entially expressed genes. In the past decade, a plethora of methods have been
developed for this purpose. The last generation of pathway analysis methods
are designed to take into account various aspects of pathway topology in order
to increase the accuracy of the findings. Here, we cover 34 such topology-based
pathway analysis methods published in the past 13 years. We compare these
methods on categories related to implementation, availability, input format,
graph models, and statistical approaches used to compute pathway level statis-
tics and statistical significance. We also discuss a number of critical challenges
that need to be addressed, arising both in methodology and pathway repre-
sentation, including inconsistent terminology, data format, lack of meaningful
benchmarks, and, more importantly, a systematic bias that is present in most
existing methods. © 2018 by John Wiley & Sons, Inc.
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INTRODUCTION

With rapid advances in high-throughput
technologies, various kinds of genomic
data have become prevalent in most of
biomedical research. Advanced techniques
in sequencing (e.g., RNA-Seq, miRNA-Seq,
DNA-Seq) and microarray assays (e.g., gene
expression, methylation) have transformed bi-
ological research by enabling comprehen-
sive monitoring of biological systems. Vast
amounts of data of all types have accumu-
lated in many public repositories, such as Gene
Expression Omnibus (GEO; Barrett et al.,
2013; Edgar, Domrachev, & Lash, 2002), Ar-
ray Express (Brazma et al., 2003; Rustici
et al.,, 2013), The Cancer Genome At-
las (https://cancergenome.nih.gov/), and cBio-
Portal (Cerami et al., 2012; Gao et al., 2013).
However, there is a large gap between the ease
of data collection and our ability to extract
knowledge from these data. Contributing to

this gap is the fact that living organisms are
complex systems whose emerging phenotypes
are the results of multiple complex interactions
taking place on various metabolic and signal-
ing pathways.

Regardless of the technology being used,
a typical comparative analysis (e.g., disease
versus control, treated versus not treated, drug
A versus drug B, etc.) often yields a set of
genes that are differentially expressed (DE) be-
tween the two phenotypes. Even though these
lists of DE genes are important in identify-
ing the genes that may be involved in biologi-
cal changes, they fail to reveal the underlying
mechanisms. In order to translate these lists
of DE genes into a better understanding of bi-
ological phenomena, researchers have devel-
oped a variety of knowledge bases that map
genes to functional modules. Depending on
the amount of information that one wishes to
include, these modules can be described as
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Figure 8.25.1 Pathways are more than gene sets. Panel A shows the graphical representation of ERBB signaling pathway
from KEGG database while panel B shows the set of genes on the pathway. The graph in panel A contains important
information regarding gene product (protein) localization, gene, protein, or metabolite interactions and the types of these
interactions (activation, repression, etc.), the direction of the signal propagation, etc. Over-representation analysis (ORA)
and functional class scoring (FCS) approaches are unable to exploit this information. As such, for the same molecular
measurement, these approaches would yield exactly the same significance value for this pathway even if the graph were
to be completely redesigned by future discovery. In contrast, network-based approaches are able to take into account the
topological order of the genes and there interactions.
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simple gene sets based on a function, process
or component (e.g., the Molecular Signatures
Database MSigDB; Liberzon et al., 2011), or-
ganized in a hierarchical structure that con-
tains information about the relationship be-
tween the various modules, as found in the
Gene Ontology (Ashburner et al., 2000), or
organized into pathways that describe in de-
tail all known interactions between the vari-
ous genes that are involved in a certain phe-
nomenon. Biological processes in which genes
are known to interact with each other are ac-
cumulated in public databases, such as the
Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa, Furumichi, Tanabe, Sato,

& Morishima, 2017; Kanehisa & Goto, 2000),
Reactome (Croft et al., 2014), and Biocarta
(http://www.biocarta.com).

Concurrently, statistical methods have been
developed to identify the functional modules
or pathways that are impacted from the dif-
ferential expression evidence. They allow us
to gain insights into the functional mecha-
nisms of cells beyond the detection of dif-
ferential expressed genes. The earliest ap-
proaches use Over-Representation Analysis
(ORA; Draghici, Khatri, Martins, Ostermeier,
& Krawetz, 2003; Tavazoie, Hughes, Camp-
bell, Cho, & Church, 1999) to identify gene
sets that have more DE genes than expected
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Table 8.25.1 Pathway Analysis Tools

Method Auvailability® HIPAA? License¢ Code? Year Reference

Signaling pathway analysis using gene expression

MetaCore® Web (https://www.genego.com/ No Thomson Java 2004 N/A
metacore.php) Reuters

Pathway- Standalone (Bioconductor), Web No Free/ Java, R 2005 (Draghici et al.,

Express (http: //vortex.cs.wayne.edu/) 2007, Khatri
superseded by the ROntoTools et al., 2007)

PathOlogist ~ Standalone (ftp://ftpl.nci.nih.gov/pub/ No Free MATLAB 2007 (Efroni,
pathologist/) Schaefer, &

Buetow, 2007;
Greenblum,
Efroni,
Schaefer, &
Buetow, 2011)

iPathway Web (https://www.advaitabio Yes Advaita Java, R 2009 N/A

Guide® .com/products.html) Corp.

SPIA Standalone (Bioconductor) No GPL (=2) R 2009 (Tarca et al.,

2009)

NetGSA Standalone (https://www.biostat No GPL-2 R 2009 (Shojaie &
.washington.edu/~ashojaie/ Michailidis,
software/ 2009; Shojaie

& Michailidis,
2010)

PWEA Standalone (Attps://zlab.bu No Free/ C++ 2010 (Hung et al.,
.edu/PWEA/) 2010)

TopoGSA Web (https://www.infobiotics No Free/ PHP, R 2010 (Glaab, Baudot,
.net/topogsa) Krasnogor, &

Valencia, 2010)

Topology Standalone (CRAN) No AGPL-3 R 2010 (Massa,

GSA Chiogna, &

Romualdi,
2010)
DEGraph Standalone (Bioconductor) No GPL-3 R 2010 (Jacob,
Neuvial, &
Dudoit, 2010)
GGEA Standalone (Bioconductor) No Artistic- R 2011 (Geistlinger,
2.0 Csaba, Kiuffner,
Mulder, &
Zimmer, 2011)
BPA Standalone No Free/ MATLAB 2011 (Isci, Ozturk,
(https://bumil.boun.edu.tr/bpa) Jones, & Otu,
2011)
GANPA Standalone (CRAN) No GPL-2 R 2011 (Fang, Tian, &
Ji, 2011)
ROnto Standalone (Bioconductor) No CCBY- R 2012 (Voichita et al.,
Tools® NC-ND 2012)
4
BAPA- No implementation available No N/A R 2012 (Zhao et al.,
IGGFD 2012)
continued
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Table 8.25.1 Pathway Analysis Tools, continued

Method

Availability®

HIPAA?

License® Code?

Year

Reference

CePa

THINK-

Back-DS

TBScore

ACST

EnrichNet

clipper

DEAP

DRAGEN

ToPASeq?®

pDis

SPATIAL

BLMA"

Standalone (CRAN), Web
(https://mcube.nju.edu.cn/cgi-bin/
cepa/main.pl)

Standalone, Web
(https://eecs.umich.edu/db/think/
software.html)

No implementation available

Standalone (available as article
supplemental)

Web (https://www.enrichnet.org/)

Standalone (https.://romualdi.bio
.unipd.it/software)

Standalone (available as article
supplemental)

Standalone (https://bioinfo.au.
tsinghua.edu.cn/dragen/)

Standalone (Bioconductor)

Standalone (Bioconductor)

No implementation available

Standalone (Bioconductor)

No

No

No

No

GPL(>2) R

Free/ Java

N/A N/A

N/A R

free** PHP

AGPL-3 R

GNU
Lesser
GPL

Python

N/A C++

AGPL-3 R

Free/ R

N/A N/A

GPL(>2) R

2012

2012

2012

2012

2012

2013

2013

2014

2016

2016

2016

2017

(Gu, Liu, Cao,
Zhang, & Wang,
2012)

(Farfan, Ma,
Sartor,
Michailidis, &
Jagadish, 2012)
(Ibrahim, Jassim,
Cawthorne, &

Langlands,
2012)

(Mieczkowski,
Swiatek-
Machado, &
Kaminska, 2012)

(Glaab, Baudot,
Krasnogor,
Schneider, &
Valencia, 2012)

(Martini, Sales,
Massa, Chiogna,
& Romualdi,
2013)

(Haynes,
Higdon,
Stanberry,
Collins, &
Kolker, 2013)

(Ma, Jiang, &
Jiang, 2014)

(Ihnatova &
Budinska, 2015)

(Ansari,
Voichita,
Donato, Tagett,
& Draghici,
2017)
(Bokanizad,
Tagett, Ansari,
Helmi, &
Draghici, 2016)

(Nguyen, Tagett,
Donato, Mitrea,
& Draghici,
2016; also see
Internet
Resources)
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Table 8.25.1 Pathway Analysis Tools, continued

Method Auvailability® HIPAA? License¢ Code? Year Reference

Signaling pathway analysis using multiple types of data

PARADIGM Standalone (https://sbenz.github No UCSC- C 2010 (Vaske et al.,

.com/Paradigm) CGB, 2010)
free/

micro Standalone No AGPL-3 R 2014 (Calura et al.,

Graphite (https://romualdi.bio.unipd.it/software) 2014)

mirlntegrator Standalone (Bioconductor) No GPL>3 R 2016 (Diaz et al.,
2016; Nguyen
etal., 2016)

Metabolic pathway analysis

ScorePAGE ~ No implementation available No N/A N/A 2004 (Rahnenfiihrer
et al., 2004)

TAPPA No implementation available No N/A N/A 2007 (Gao & Wang,
2007)

MetPA Web (https://metpa.metabolomics.ca) No GPL (=2) PHP,R 2010 Xia &
Wishart, 2010)

Metabo Web (https://metpa.metabolomics.ca) No GPL (=2) R 2011 (Xia & Wishart,

Analyst 2011; Xia,
Sinelnikov,
Han, &

Wishart, 2015)

¢ Availability is a criterion that describes the implementation of the method as standalone or Web-based.

bHIPAA provides information about HIPAA compliance.

“License provides information about the type of the software license. GPL is an abbreviation for the GNU General Public License; AGPL is an
abbreviation for the GNU Affero General Public License; CC BY-NC-ND 4 is an abbreviation of Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International Public License.

4Code shows the programming language used for the method implementation.

¢Commercial method.

fFree for academic and non-commercial use; UCSC-CGB is the University of California Santa Cruz Cancer Genome Browser.

8ToPASeq provides an R package that runs TopologyGSA, DEGraph, clipper, SPIA, TBScore, PWEA, TAPPA.
"BLMA provides an R package for bi-level meta-analysis that runs SPIA, ORA, GSA, and PADOG using one or multiple expression datasets.

by chance. The drawbacks of this type of ap-
proach include: (i) it only considers the num-
ber of DE genes and completely ignores the
magnitude of the actual expression changes,
resulting in information loss; (ii) it assumes
that genes are independent, which they are
not (since the pathways are graphs that de-
scribe precisely how these genes influence
each other); and (iii) it ignores the interactions
between various genes and modules. Func-
tional Class Scoring (FCS) approaches, such
as Gene Set Enrichment Analysis (GSEA;
Subramanian et al., 2005) and Gene Set Anal-
ysis (GSA; Efron & Tibshirani, 2007), have
been developed to address some of the is-
sues raised by ORA approaches. The main
improvement of FCS is the observation that
small but coordinated changes in expression
of functionally related genes can have signifi-
cant impact on pathways.

Current Protocols in Bioinformatics

ORA and FCS approaches are often re-
ferred as gene set enrichment methods. Com-
prehensive lists of gene set analysis ap-
proaches, as well as comparisons between
them, can be found in well-developed sur-
veys (Emmert-Streib & Glazko, 2011; Kelder,
Conklin, Evelo, & Pico, 2010; Khatri, Sirota,
& Butte, 2012; Misman et al., 2009). While
useful for the purpose for which they have
been developed—to analyze sets of genes—
these methods completely ignore the topol-
ogy and interaction between genes. Topology-
based approaches, which fully exploit all
the knowledge about how genes interact as
described by pathways, have been devel-
oped more recently. The first such techniques
were ScorePAGE (Rahnenfiihrer, Domingues,
Maydt, & Lengauer, 2004) for metabolic
pathways and Impact Analysis (Draghici
et al., 2007; Tarca et al., 2009) for signaling
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pathways. Figure 8.25.1 shows an example
pathway named ERBB signaling pathway, in
which the nodes represent genes and com-
pounds while the edges represent the known
interaction between the compounds. Gene set
analysis approaches are not able to account
for the topological order of genes, nor are able
to explain the signal propagation and mecha-
nisms of the pathway. These approaches would
yield exactly the same significance value for
this pathway even if the graph were to be
completely redesigned by future discovery.
In contrast, network-based pathway analysis
can distinguish between this pathway and any
other pathway with the same proportion of DE
genes.

Here we provide a survey of 34
network-based methods developed for path-
way analysis. Our survey of commercial
tools for pathway analysis found iPath-
wayGuide (Advaita Corporation, https://www
.advaitabio.com) and MetaCore (Thomson
Reuters, https://www.thomsonreuters.com) to
be topology based. Other commercial tools,
such as Ingenuity Pathway Analysis (https:/
www.ingenuity.com) or Genomatix (https:/
www.genomatix.de), do not use pathway topol-
ogy information and thus are not included in
this review. The existence of only two com-
mercial tools is more evidence of the challenge
faced by the developers of such methods due
to lack of standards.

In this document, we categorize and com-
pare the methods based on the following
criteria: the type of input the method ac-
cepts, graph model, and the statistical ap-
proaches used to evaluate gene and pathway
changes. Under the heading “Experiment In-
put and Pathway Databases” below we de-
scribe the types of input the surveyed meth-
ods use. Under the heading “Graph Mod-
els” we provide details regarding the graph
models used for the biological networks. Un-
der “Pathway Scoring Strategies” we discuss
the statistical methods used by the surveyed
methods to assess gene and pathway changes
between two phenotypes. Under “Challenges
in Pathway Analysis” we discuss a number
of outstanding challenges that needed to be
addressed in order to improve the reliabil-
ity, as well as the relevance, of the next-
generation pathway analysis approaches. We
discuss the key elements and limitations of the
surveyed methods without going into details
of each technique. For a more detailed review
and technical descriptions of network-based
pathway analysis methods, please refer to

Mitrea et al. (2013) or referenced manuscripts
(Table 8.25.1).

NETWORK-BASED PATHWAY
ANALYSIS

The term pathway analysis is used in a
very broad context in the literature, includ-
ing biological network construction and in-
ference. Here we focus on methods that are
able to exploit biological knowledge in pub-
lic repositories, rather than on network in-
ference approaches that attempt to infer or
reconstruct pathways from molecular mea-
surements. Table 8.25.1 shows the list of 34
pathway analysis approaches, together with
their availability and licensing. In this sec-
tion we start by describing the availability of
each method before discussing the input for-
mat, graph model, and underlying statistical
approaches.

Software Availability and
Implementation

We often think that the main strength of
an approach lies in its novelty and algorithm
efficiency. However, the implementation and
availability of a tool have become increas-
ingly important for several reasons. First, soft-
ware availability and version control are cru-
cial for reproducing the experimental results
that were used to assess the performance of
the approach (Sandve, Nekrutenko, Taylor, &
Hovig, 2013). For this reason, many journals
request authors to make their software and data
available before accepting methods articles.
Second, if a software application is not ready-
to-run, it is very unlikely that the intended au-
dience (mostly life scientists) will invest the
time to understand and implement complex
algorithms. Practicality, user-friendliness, out-
put format, and type of interface are all to be
considered. Depending on the desired avail-
ability and intended audience, a software pack-
age may be implemented as standalone or Web
based. Among the 34 approaches, there are 30
that are available either as a standalone soft-
ware package or Web service.

Typically, standalone tools need to be in-
stalled on local machines or servers, which of-
ten requires some administrative skills. Most
standalone tools depend on full or partial
copies of public pathway databases, stored
locally, and need to be updated periodically.
Advantages of standalone tools include: (i)
instant availability that does not require Inter-
net access, and (ii) the security and privacy of
the experimental data. Web-based tools, on the
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other hand, run the analyses on a remote server
providing computational power and a graph-
ical interface. The major advantage of Web-
based tools is that they are user-friendly and do
not require a separate local installation. From
the accessibility perspective, Web-based tools
have the advantage of being available from any
location as long as there is an Internet connec-
tion and a browser available. Also, the update
is almost transparent to the client. This makes
the user’s task easy and enables collaboration,
since users all over the world can utilize the
same method without the burden of installing
it or keeping it up-to-date. There are methods
that provide both Web-based and standalone
implementations.

HIPAA compliance may also be a factor in
certain applications that involve data coming
from patients or data linked to other clinical
data or clinical records. Currently, the iPath-
wayGuide is the only tool available that can
do topological pathway analysis and is HIPAA
compliant.

The programming language and style used
for implementation also play an important role
in the acceptance of a method. Software tools
that are neatly implemented and packaged are
more appealing compared to those that do not
have ready-to-use implementations. Many of
the methods are implemented in the R pro-
gramming language and are available as soft-
ware packages from Bioconductor, CRAN, or
the author’s Web site. Their popularity among
biologists and bioinformaticians is due to the
fact that many bioinformatics-dedicated pack-
ages are available in R. In addition, the rigor-
ous review procedure provided by Bioconduc-
tor and CRAN makes the software packages
more standardized and reliable.

Experiment Input and Pathway
Databases

A pathway analysis approach typically re-
quires two types of input: experiment data and
known biological networks. Experiment data
is usually collected from high-throughput ex-
periments that compare a condition phenotype
to a control phenotype. A condition pheno-
type can be a disease, a drug treatment, or
the knock-out (KO) of a gene, while a con-
trol phenotype can be a healthy state, a dif-
ferent disease or drug treatment, or wild-type
(non-KO) samples. Experimental data can be
obtained from multiple technologies that pro-
duce different types of data: gene expression,
protein abundance, metabolite concentration,
miRNA expression, etc. Biological networks

Current Protocols in Bioinformatics

or pathways are often represented in the form
of graphs that capture our current knowl-
edge about the interactions of genes, proteins,
metabolites, or compounds in an organism.
The pathway data is accumulated, updated,
and refined by amassing knowledge from sci-
entific literature describing individual interac-
tions or high-throughput experiment results.

Table 8.25.2 shows a summary of in-
put format and mathematical modeling of
the surveyed approaches. Most pathway
analysis methods analyze data from high-
throughput experiments, such as microarrays,
next-generation sequencing, or proteomics.
They accept either a list of gene IDs or a list
of such gene IDs associated with measured
changes. These changes could be measured
with different technologies and therefore can
serve as proxies for different biochemical en-
tities. For instance, one could use gene ex-
pression changes measured with microarrays,
or protein levels measured with a proteomic
approach, etc.

Different analysis methods use different in-
put formats. Many methods accept a list of all
genes considered in the experiment together
with their expression values. Some analysis
methods select a subset of genes, considered
to be differentially expressed (DE), based on a
predefined cut-off. The cut-off is typically ap-
plied on fold-change, p-value, or both. These
methods use the list of DE genes and their cor-
responding statistics (fold-change, p-value) as
input. Other methods use only the list of DE
genes, without corresponding expression val-
ues, because their scoring methods are based
only on the relative positions of the genes in
the graph.

Methods which use cut-offs are sensitive to
the chosen threshold value, because a small
change in the cut-off may drastically change
the number of selected genes (Nam & Kim,
2008). In addition, they typically use the most
significant genes and discard the rest whose
weaker but coordinated changes may also have
significant impact on pathways. Genes with
moderate differential expression may be lost,
even though they might be important play-
ers in the impacted pathways (Ben-Shaul,
Bergman, & Soreq, 2005). Furthermore, the
genes included in the set of DE genes can
vary dramatically if the selection methods are
changed. Hence, the results of pathway anal-
yses based on DE genes may be vastly differ-
ent depending on both the selection method as
well as the threshold value (Pan, Lih, & Co-
hen, 2005). Furthermore, for the same disease,
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Table 8.25.2 A Summary of the Experimental Data Input Format and Biological Network Databases Used by the Surveyed
Methods is Presented

Method

Experiment input®

Pathway database”

Graph model®

Pathway scoring

Signaling pathway analysis using gene expression

MetaCore DE genes Proprietary canonical Single-type, directed ~ Hierarchically
pathway, genome-scale aggregated
network

Pathway-Express ~ DE genes change, or ~ KEGG signaling Single-type, directed =~ Hierarchically

measured genes aggregated
change?
PathOlogist Measured genes KEGG Multi-type, directed Hierarchically
expression aggregated

iPathwayGuide DE genes change, or  KEGG signaling, Single-type, directed  Hierarchically
measured genes Reactome, NCI, aggregated
change BioCarta

SPIA DE genes change KEGG signaling Single-type, directed ~ Hierarchically

aggregated

NetGSA Measured genes KEGG signaling Single-type, directed =~ Multivariate analysis

expression

PWEA Measured genes YeastNet Single-type, Hierarchically

expression undirected aggregated

TopoGSA DE genes PPI network, KEGG Single-type, Hierarchically

undirected aggregated

TopologyGSA Measured genes NCI-PID Single-type, Multivariate analysis

expression undirected

DEGraph Measured genes KEGG Single-type, Multivariate analysis

expression undirected

GGEA Measured genes KEGG Single-type, directed ~ Aggregate fuzzy

expression similarity

BPA Measured genes NCI-PID Single-type, DAG Bayesian network

expression—with
cut-off

GANPA DE genes change, or ~ PPI network, KEGG, Single-type, Hierarchically

measured genes Reactome, NCI-PID, undirected aggregated
expression HumanCyc

ROntoTools DE genes change, or ~ KEGG signaling Single-type, directed ~ Hierarchically

measured gene aggregated
expression

BAPA-IGGFD Measured genes Literature-based Single-type, DAG Bayesian network

expression - with interaction database;

cut-off KEGG, WikiPathways;
Reactome; MSigDB;
GO BP; PANTHER;
constructed gene
association network
from PPIs;
co-annotation in GO
Biological Process (BP);
and co-expression in
microarray data

continued
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Table 8.25.2 A Summary of the Experimental Data Input Format and Biological Network Databases Used by the Surveyed
Methods is Presented, continued

Method Experiment input” Pathway database” Graph model® Pathway scoring
CePa DE genes expression, NCI-PID Single-type, directed ~ Hierarchically
or measured genes aggregated
expression
THINK-Back-DS  DE genes change, KEGG, PANTHER, Single-type, directed ~ Hierarchically
measured genes BioCarta, Reactome, aggregated
expression GenMAPP
TBScore DE genes change KEGG signaling Single-type, directed ~ Hierarchically
aggregated
ACST Measured genes KEGG signaling Single-type, directed ~ Hierarchically
expression aggregated
EnrichNet DE genes list PPI network, KEGG, Single-type, Hierarchically
BioCarta, undirected aggregated
WikiPathways,
Reactome, NCI-PID,
InterPro, GO with
STRING 9.0
clipper Measured genes BioCarta, KEGG, Single-type, directed =~ Multivariate analysis
expression NCI-PID, Reactome
DEAP Measured genes KEGG, Reactome Single-type, directed  Hierarchically
expression aggregated
DRAGEN Measured genes RegulonDB, M3D, Single-type, directed  Linear regression
expression HTRIdb, ENCODE,
MSigDB
ToPASeq® Measured genes KEGG Single-type, directed = Hierarchical &
expression multivariate
pDis DE genes change, or  KEGG signaling Single-type, directed  Hierarchically
measured genes aggregated
change?
SPATIAL DE genes change KEGG signaling Single-type, directed ~ Hierarchically
aggregated
BLMA/ Measured genes KEGG signaling Single-type, directed ~ Hierarchically
expression aggregated
Signaling pathway analysis using multiple types of data
PARADIGM Measured genes Constructed PPI Multi-type, directed Hierarchically
expression, copy networks from MIPS, aggregated
number, and proteins  DIP, BIND, HPRD,
levels IntAct, and BioGRID
microGraphite Measured gene BioCarta, KEGG, Single-type, directed  Multivariate analysis
expression, and NCI-PID, Reactome
miRNA expression
mirlntegrator DE genes change, KEGG signaling, Single-type, directed  Hierarchically
and DE miRNA miRTarBase aggregated
change
Metabolic pathway analysis
ScorePAGE Measured genes KEGG metabolic Single-type, Hierarchically
expression undirected aggregated
continued
8.25.9
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Table 8.25.2 A Summary of the Experimental Data Input Format and Biological Network Databases Used by the Surveyed
Methods is Presented, continued

Method Experiment input” Pathway database” Graph model® Pathway scoring

TAPPA Measured genes KEGG metabolic Single-type, Hierarchically
expression undirected aggregated

MetPA DE metabolites KEGG metabolic Single-type, directed Hierarchically
change aggregated

MetaboAnalyst DE genes change and KEGG metabolic Single-type, directed Hierarchically
DE metabolites aggregated
change

“Experiment input shows the experiment data input format for each method. “DE” means differentially expressed. “Change” means fold-change value
or -statistics when comparing gene/metabolites values between two phenotypes. “Measured” means the list of all the genes/metabolites measured in
the experiment; “List” represents a list of genes/metabolites identifiers (e.g., symbols). “With cut-off” show methods that take as input the list of all
measured genes and in the analysis they mark the DE genes.

bPathway database shows the name of the knowledge source for biological interactions.

“Graph model is a characteristic that shows if the graph has one or multiple types of nodes as well as if directed or undirected.

4The package ROntoTools (Bioconductor) allows for analysis using expression values of all genes.

“ToPASeq provides an R package that runs TopologyGSA, DEGraph, clipper, SPIA, TBScore, PWEA, TAPPA.

/BLMA provides an R package for bi-level meta-analysis that runs SPIA, ORA, GSA, and PADOG using one or multiple expression datasets.
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independent studies or measurements often
produce different sets of differentially ex-
pressed (DE) genes (Ein-Dor, Kela, Getz,
Givol, & Domany, 2005; Ein-Dor, Zuk, & Do-
many, 2006; Tan et al., 2003). This makes ap-
proaches that use DE genes as input appear
even more unreliable.

Usually, pathways are sets of genes and/or
gene products that interact with each other in
a coordinated way to accomplish a given bi-
ological function. A typical signaling path-
way (in KEGG for instance) uses nodes to
represent genes or gene products and edges
to represent signals, such as activation or re-
pression, that go from one gene to another.
A typical metabolic pathway uses nodes to
represent biochemical compounds and edges
to represent reactions that transform one or
more compound(s) into one or more other
compounds. These reactions are usually car-
ried out or controlled by enzymes, which are
in turn coded by genes. Hence, in a metabolic
pathway, genes or gene products are associated
with edges rather than nodes, as in a signal-
ing pathway. The immediate consequence of
this difference is that many techniques cannot
be applied directly on all available pathways.
This is why the analysis of metabolic pathways
is still generally and arguably underdeveloped
(only 128 Google Scholar citations to date for
the original ScorePage paper; Rahnenfiihrer
et al.,, 2004) and there are not many other
methods available for metabolic pathway anal-
ysis. However, the topology-based analysis of
signaling pathways has been very successful

(over 1200 citations to date for the two impact
analysis papers mentioned above; Draghici
et al., 2007; Tarca et al., 2009) and over 30
other methods have been developed since.

There are other types of biological net-
works that incorporate genome-wide inter-
actions between genes or proteins such as
protein-protein interaction (PPI) networks.
These networks are not restricted to specific
biological functions. The main caveat related
to PPI data is that most such data are obtained
from a bait-prey laboratory assays, rather than
from in vivo or in vitro studies. The fact that
two proteins stick to each other in an assay
performed in an artificial environment can be
misleading, since the two proteins may never
be present at the same time in the same tissue
or the same part of the cell.

Publicly available curated pathway
databases used by methods listed in Table
8.25.2 are KEGG (Ogata et al., 1999),
NCI-PID (Schaefer et al., 2009), BioCarta
(https://www.biocarta.com),  WikiPathways
(Pico et al., 2008), PANTHER (Mi et al.,
2005), and Reactome (Joshi-Tope et al.,
2005). These knowledge bases are built by
manually curating experiments performed in
different cell types under different conditions.
These curated knowledgebases are more
reliable than protein interaction networks
but do not include all known genes and
their interactions. As an example, despite
being continuously updated, KEGG includes
only about 5,000 human genes in signaling
pathways while the number of protein-coding
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Figure 8.25.2 Five biological network graph models used by public databases are displayed.
The KEGG database contains both signaling and metabolic networks. Signaling networks have
genes/gene products as nodes and regulatory signals as edges. Types of regulatory signals
include activation, inhibition, phosphorylation, and many others. Metabolic networks have bio-
chemical compounds as nodes and chemical reactions as edges. Enzymes (specialized pro-
teins/gene products) catalyze biochemical reactions; therefore, genes are linked to the edges in
these networks. The Reactome database is a collection of biochemical reactions that are grouped
in functionally related sets to form a pathway. There are two types of nodes: biochemical com-
pounds and reactions. Reaction nodes link biochemical compounds as reactants and products.
NCI-PID signaling networks also have two types of nodes: component nodes and process nodes.
Component nodes are usually biomolecular components. Process nodes are usually biochemical
reactions or biological processes. In these networks, process nodes link two or more component
nodes through directed edges. Process nodes are assigned one of the following states: positive
or negative regulation, or involved in. Protein-protein interaction (PPI) networks have proteins
as nodes and physical binding as edges or interactions. Two-hybrid assays are typically used to
determine protein-protein interactions. PPIs can be directed in the bait-prey orientation when the
bait-prey relation is considered (top), or undirected when is not (bottom). The Biological Pathway
Exchange (BioPAX) format has physical entities as nodes and conversions as edges. The ad-
vantage of this representation is that it is generic and provides a lot of flexibility to accommodate
various types of interactions. In addition, it provides a machine-readable standard that can be
used for all databases to provide their data in a unified format. Network nodes can be genes,
gene products, complexes, or non-coding RNA. Network edges can be assembly of a complex,
disassembly of a complex, or biochemical reactions, among others.

genes is estimated to be between 19,000 and
20,000 (Ezkurdia et al., 2014).

The implementation of analysis methods
constrains the software to accept a specific in-
put pathway data format, while the underlying
graph models in the methods are independent
of the input format. Regardless of the pathway
format, this information must be parsed into a
computer-readable graph data structure before
being processed. The implementation may in-
corporate a parser, or this may be up to the user.
For instance, SPIA accepts any signaling path-
way or network if it can be transformed into an
adjacency matrix representing a directed graph
where all nodes are components and all edges
are interactions. NetGSA is similarly flexible
with regard to signaling and metabolic path-
ways. SPIA provides KEGG signaling path-
ways as a set of pre-parsed adjacency matri-
ces. The methods described in this chapter may
be restricted to only one pathway database, or
may accept several.

To the best of our knowledge, there have
been no comprehensive approaches to com-
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pare the pros and cons of existing knowledge
bases. It is completely up to researchers to
choose the tools that are able to work with
the database they trust. Intuitively, methods
that are able to exploit the complementary in-
formation available from different databases
have an edge over methods that work with one
single database.

Graph Models

Pathway analysis approaches use two major
graph models to represent biological networks
obtained from knowledge bases: (i) single-
type and (ii) multiple-type. The first model
allows only one type of node, i.e., a gene or
protein, with edges representing molecular in-
teractions between the nodes (KEGG signal-
ing in Fig. 8.25.2). Models that contain di-
rected graphs are more suitable for analyses
that include signal propagation of gene pertur-
bation. The second graph model allows mul-
tiple type of nodes, such as components and
interactions (NCI-PID in Fig. 8.25.2). Multi-
type graph models are more complex than
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single-type, but they are expected to capture
more pathway characteristics. For example,
single-type models are limited when trying
to describe “all” and “any” relations between
multiple components that are involved in the
same interaction. Bipartite graphs, which con-
tain two types of nodes and allow connection
only between nodes of different types, are a
particular case of multi-type graph models.

The majority of analysis methods surveyed
here use a single-type graph model. Some ap-
ply the analysis on a directed or un-directed
single-type network built using the input path-
way, while others transform the pathways into
graphs with specific characteristics. An ex-
ample of the later is TopologyGSA, which
transforms the directed input pathway into
an undirected decomposable graph, which has
the advantage of being easily broken down
into separate modules (Lauritzen, 1996). In
this method, decomposable graphs are used
to find “important” submodules—those that
drive the changes across the whole pathway.
For each pathway, TopologyGSA creates an
undirected moral graph from the underlying
directed acyclic graph (DAG) by connecting
the parents of each child and removing the
edge direction. [The moral graph of a DAG
is the undirected graph created by adding an
(undirected) edge between all parents of the
same node (sometimes called marrying), and
then replacing all directed edges by undirected
edges. The name stems from the fact that, in
a moral graph, two nodes that have a com-
mon child are required to be married by shar-
ing an edge.] The moral graph is then used
to test the hypothesis that the underlying net-
work is changed significantly between the two
phenotypes. If the the research hypothesis is
rejected, a decomposable/triangulated graph is
generated from the moral graph by adding new
edges. This graph is broken into the maximal
possible submodules and the hypothesis is re-
tested on each of them.

PathOlogist and PARADIGM are the
two surveyed methods that use multi-type
graph models. PathOlogist uses a bipartite
graph model with component and interac-
tion nodes. PARADIGM, conceptually moti-
vated by the central dogma of molecular bi-
ology, takes a pathway graph as input and
converts it into a more detailed graph, where
each component node is replaced by sev-
eral more specific nodes: biological entity
nodes, interaction nodes, and nodes contain-
ing observed experiment data. The observed
experiment nodes could in principle contain
gene-expression and copy-number informa-

tion. Biological entity nodes are DNA, mRNA,
protein, and active protein. The interaction
nodes are transcription, translation, or pro-
tein activation, among others. Biological en-
tity and interaction node values are derived
from these data and specify the probability of
the node being active. These are the hidden
states of the model. From the mathematical
model perspective, models that allow multiple
types of nodes—component nodes and inter-
action nodes—are more flexible and are able to
model both AND and OR gates, which are very
common when describing cellular processes.

Pathway Scoring Strategies

The goal of the scoring method is to com-
pute a score for each pathway based on the ex-
pression change and the graph model, resulting
in a ranked list of pathways or sub-pathways.
There are a variety of approaches to quantify
the changes in a pathway. Some of the analysis
methods use a hierarchically aggregated scor-
ing algorithm, where on the first level a score
is calculated and assigned to each node or pair
of nodes (component and/or interaction). On
the second level, these scores are aggregated to
compute the score of the pathway. On the last
level, the statistical significance of the path-
way score is assessed using univariate hypoth-
esis testing. Another approach assigns a ran-
dom variable to each node, and a multivariate
probability distribution is calculated for each
pathway. The output score can be calculated in
two ways. One way is to use multivariate hy-
pothesis testing to assess the statistical signif-
icance of changes in the pathway distribution
between the two phenotypes. The other way is
to estimate the distribution parameters based
on the Bayesian network model and use this
distribution to compute a probabilistic score to
measure the changes. In this section, we pro-
vide details regarding the scoring algorithms
of the surveyed methods. See Figure 8.25.3 for
scoring algorithms categories.

Hierarchically aggregated scoring

The workflow of the hierarchically aggre-
gated scoring strategy has three levels: node
statistic computation, pathway statistic com-
putation and the evaluation of the significance
for the pathway statistic.

Node level scoring

Most of the surveyed methods incorpo-
rate pathway topology information in the node
scores. The node level scoring can be di-
vided into four categories: (i) graph mea-
sures (centrality), (ii) similarity measures,
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Figure 8.25.3 A summary of the statistical models is presented for the surveyed methods. Most
methods use the hierarchically aggregated scoring strategy, in which the score is computed at
the node level before being aggregated at the pathway level for significance assessment. In the
left panel, the rows show a node-level statistical model while the columns show the aggregating
strategies (linear, non-linear, or weighted gene set). Approaches in multivariate analysis and
Bayesian network categories use multivariate modeling and Bayesian network, respectively, to
find pathways that are most likely to be impacted. Both BLMA and ToPASeq provide R packages
that run multiple algorithms. DRAGEN follows a linear regression strategy while GGEA applies

fuzzy modeling to rank the pathways.

(iii) probabilistic graphical models, and (iv)
normalized node value (NNV). Approaches in
the first category use centrality measures or a
variation of these measures to score nodes in a
given pathway. Centrality measures represent
the importance of a node relative to all other
nodes in a network. There are several central-
ity measures that can be applied to networks
of genes and their interactions: degree central-
ity, closeness, between-ness, and eigenvector
centrality. Degree centrality accounts for the
number of directed edges that enter and leave
each node. Closeness sums the shortest dis-
tance from each node to all other nodes in
the network. Node between-ness measures the
importance of a node according to the number
of shortest paths that pass through it. Eigen-
vector centrality uses the network adjacency
matrix of a graph to determine a dominant
eigenvector; each element of this vector is a
score for the corresponding node. Thus, each
score is influenced by the scores of neighbor-
ing nodes. In the case of directed graphs, a
node that has many downstream genes has
more influence and receives a higher score.

Current Protocols in Bioinformatics

Methods in this category include MetaCore,
SPIA, iPathwayGuide, MetPA, SPATIAL, To-
poGSA, DEAP, pDis, mirlntegrator, Pathway-
Express, and BLMA.

Approaches in the second category use
similarity measures in their node level scor-
ing. Similarity measures estimate the co-
expression, behavioral similarity, or co-
regulation of pairs of components. Their
values can be correlation coefficients, covari-
ances, or dot products of the gene expression
profile across time or samples. In these meth-
ods, the pathways with clusters of highly cor-
related genes are considered more significant.
At the node level, a score is assigned to each
pair of nodes in the network which is the ra-
tio of one similarity measure over the shortest
path distance between these nodes. Thus, the
topology information is captured in the node
score by incorporating the shortest path dis-
tance of the pair. Methods in this category in-
clude ScorePAGE and PWEA.

Approaches in the third category incorpo-
rate the topology in the node level scoring
using a probabilistic graphical model. In this
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model, nodes are random variables, and edges
define the conditional dependency of the nodes
they link. For example, PARADIGM takes ob-
served experimental data and calculates scores
for all component nodes, in both observed and
hidden states, from the detailed network cre-
ated by the method based on the input path-
way. For each node score, a positive or negative
value denotes how likely it is for the node to
be active or inactive, respectively. The scores
are calculated to maximize the probability of
the observed values. A p-value is associated
with each score of each sample such that each
node can be tagged as significantly active,
significantly inactive, or not significant. For
each network, a matrix of p-values is output
in which columns are samples and rows are
component nodes. Methods in this category
include PARADIGM and PathOlogist.

Approaches in the fourth category simply
compute the score for each node using the in-
formation obtained from the experiment input.
For example, TAPPA calculates the score of
each node as the square root of the normalized
log gene expressions (node value) while ACST
and TBScore calculate the node level score us-
ing a sign statistic and log fold-change.

Pathway level scoring

There are three different ways to compute
the pathway score: (i) linear, (ii) non-linear,
and iii) weighted gene set. Most methods ag-
gregate node level statistics to pathway level
statistics using linear functions such as av-
eraging or summation. For example, iPath-
wayGuide computes the scores of pathway as
the sum of all genes while TBScore weights
the pathway DE genes based on their log fold
change and the number of distinct DE genes
directly downstream of them, using a depth-
first search algorithm.

Approaches in the second group (non-
linear) use a non-linear function to compute
the pathway scores. For example, TAPPA com-
putes the pathway score for each sample as a
weighted sum of the product of all node pair
scores in the pathway. The weight coefficient
is 0 when there is no edge between a pair. For
any connected node pair the weight is a sign
function, which represents joint up- or down-
regulation of the pair. Another example is En-
richNet, in which pathway scores measure the
difference of the node score distribution for a
pathway and a background network/gene set
which consists of all pathways. At the node
level, the distance of all DE genes to the path-
way is measured and summarized as a distance
distribution. The method assumes that the most

relevant pathway is the one with the greatest
difference between the pathway node score
distribution and the background score distri-
bution. The difference between the two distri-
butions is measured by the weighted averaging
of the difference between the two discretized
and normalized distributions. The averaging
method down-weights the higher distances and
emphasizes the lower distance nodes.

Methods in the third group (weighted gene
set) design scoring techniques that incorpo-
rate existing gene set analysis methods, such
as GSEA (Subramanian et al., 2005), GSA
(Efron & Tibshirani, 2007), or LRPath (Sartor,
Leikauf, & Medvedovic, 2009). Pathway-level
scores can be calculated using node scores
that represent the topology characteristic of the
pathway as weight adjustments to a gene set
analysis method. PWEA, GANPA, THINK-
Back-DS, and CePa use this approach, and we
refer to them as weighted gene set analysis
methods.

Pathway significance assessment

Pathway scores are intended to provide in-
formation regarding the amount of change
incurred in the pathway between two phe-
notypes. However, the amount of change is
not meaningful by itself, since any amount of
change can take place just by chance. An as-
sessment of the significance of the measured
changes is thus required.

TopoGSA, MetPA, and EnrichNet output
scores without any significance assessment,
leaving it up to the user to interpret the re-
sults. This is problematic because users do not
have any instrument to distinguish between
changes due to noise or random causes and
meaningful changes that are unlikely to occur
just by chance and that therefore are possi-
bly related to the phenotype. The rest of the
analysis methods perform a hypothesis test for
each pathway. The null hypothesis is that the
value of the observed statistic is due to random
noise or chance alone. The research hypothe-
sis is that the observed values are substantial
enough that they are potentially related to the
phenotype. A p-value for calculated score is
then computed, and a user-defined threshold
on the p-value is used to decide whether the
the null hypothesis can be rejected or not for
each pathway. Finally, a correction for multi-
ple comparisons should be performed.

Typically, pathway analysis methods com-
pute one score per pathway. The distribution of
this score under the null hypothesis can be con-
structed and compared to the observed score.
However, there are often too few samples to
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calculate this distribution, so it is assumed
that the distribution is known. For example, in
MetaCore and many other techniques, when
the pathway score is the number of DE nodes
that fall on the pathway, the distribution is
assumed to be hypergeometric. However, the
hypergeometric distribution assumes that the
variables (genes in this case) are independent,
which is incorrect, as witnessed by the fact
that the pathway graph structure itself is de-
signed to reflect the specific ways in which the
genes influence each other. Another approach
to identify the distribution is to use statistical
techniques such as the bootstrap (Efron, 1979).
Bootstrapping can be done either at the sam-
ple level, by permuting the sample labels, or
at gene-set level, by permuting the the values
assigned to the genes in the set.

Multivariate analysis and Bayesian
network

Multivariate analysis methods mostly use
multivariate probability distributions to com-
pute pathway-level statistics and these can be
grouped into two subcategories. Methods in
the first category use multivariate hypothesis
testing, while methods in the second category
are based on Bayesian network.

NetGSA, TopologyGSA, DEGraph, clip-
per, and microGraphite are methods based on
multivariate hypothesis testing. These anal-
ysis methods assume the vectors of gene
expression values in each (sub)pathway are
random vectors with multivariate normal dis-
tributions. The network topology information
is stored in the covariance matrix of the cor-
responding distribution. For a network, if the
two distributions of the gene expression vec-
tors corresponding to the two phenotypes are
significantly different, the network is assumed
to be significantly impacted when comparing
the two phenotypes. The significance assess-
ment is done by a multivariate hypothesis test.
The definition of the null hypothesis for the
statistical tests and the techniques to calcu-
late the parameters of the distributions are the
main differences between these three analysis
methods.

BPA and BAPA-IGGFD are two methods
based on Bayesian networks. In a Bayesian
network, which is a special case of proba-
bilistic graphical models, a random variable
is assigned to each node of a directed acyclic
(DAG) graph. The edges in the graph represent
the conditional probabilities between nodes,
so that the children are independent from each
other and the rest of the graph when condi-
tioned on the parents. In BPA, the value of
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the Bayesian random variable assigned to each
node captures the state of a gene (DE or not). In
contrast, in BAPA-IGGFD each random vari-
able assigned to an edge is the probability that
up or down regulation of the genes at both ends
of an interaction are concordant with the type
of interaction which can be activation or inhi-
bition. In both BPA and BAPA-IGGFD, each
random variable is assumed to follow a bino-
mial distribution whose probability of success
follows a beta distribution. However, these two
methods use different approaches in represent-
ing the multivariate distribution of the corre-
sponding random vector. BPA assumes that
the random vector has a multinomial distribu-
tion, which is the generalization of the bino-
mial distribution. In this case, the vector of the
success probability follows the Dirichlet dis-
tribution, which is the multivariate extension
of the beta distribution. In contrast, BAPA-
IGGFD assumes the random variables are
independent, therefore the multivariate distri-
butions are calculated by multiplying the dis-
tributions of the random variables in the vec-
tor. It is worth mentioning that the assumption
of independence in BAPA-IGGFD is contra-
dicted by evidence, specifically in the case of
edges that share nodes.

Other approaches

The four methods DRAGEN, GGEA,
ToPASeq, and BLMA follow strategies that
are very different from those of the other 30
methods. As such, BLMA implements a bi-
level meta-analysis approach that can be ap-
plied in conjunction with any of the four sta-
tistical approaches SPIA (Tarca et al., 2009),
GSA (Efron & Tibshirani, 2007), ORA (Tava-
zoie et al., 1999), or PADOG (Tarca, Draghici,
Bhatti, & Romero, 2012). The package al-
lows users to perform pathway analysis with
one dataset or with multiple datasets. Simi-
larly, ToPASeq provides an R package that
runs TopologyGSA, DEGraph, clipper, SPIA,
TBScore, PWEA, and TAPPA. This method
models the input (biological networks and ex-
periment data) in such a way that it can be used
for any of the seven different analyses.

DRAGEN is an analysis method that scores
the interactions rather then the genes and uses
a regression model to detect differential regu-
lation. DRAGEN fits each edge of a pathway
into two linear models (for case and control)
and then computes a p-value that represents
the difference between the two models. For
each pathway, a summary statistic is computed
by combining the p-values of the edges us-
ing a weighted Fisher’s method (Fisher, 1925).
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GGEA, on the other hand, uses Petri Net (Mu-
rata, 1989) to model the pathway. The sum-
mary statistic, named consistency, is computed
from the fuzzy similarity between the observed
gene expression and Petri net with fuzzy logic
(PNFL; Kuffner, Petri, Windhager, & Zimmer,
2010). For both DRAGEN and GGEA, the p-
value of the pathway is calculated by com-
paring the observed summary statistic against
the null distribution that is constructed by
permutation.

CHALLENGES IN PATHWAY
ANALYSIS

Pathway analysis has become the first
choice for gaining insights into the underly-
ing biology of a phenotype due its explanatory
power. However, there are outstanding annota-
tion and methodological limitations that have
not been addressed (Kelder, Conklin, Evelo,
& Pico, 2010; Khatri et al., 2012). There are
three main limitations of current knowledge
bases. First, existing knowledge bases are un-
able to keep up with the information available
in data obtained from recent technologies. For
example, RNA-Seq data allows us to iden-
tify transcripts that are active under certain
conditions. Alternatively spliced transcripts,
even if they originate from the same gene,
may have distinct or even opposite functions
(Wang et al., 2008). However, most knowl-
edge bases provide pathway annotation only
at the gene level. Second, there is a lack of
condition and cell-specific information, i.e.,
information about cell type, conditions, and
time points. Finally, current pathway annota-
tions are neither complete nor perfectly accu-
rate (Khatri et al., 2012; Rhee, Wood, Dolinski,
& Dréghici, 2008). For example, the number of
genes in KEGG have remained around 5,000
despite being updated continuously in the past
10 years. while there are approximately 19,000
human genes annotated with at least one GO
term. The number of protein-coding genes is
estimated to be between 19,000 and 20,000
(Ezkurdia et al., 2014), most of which are
included in DNA microarray assays, such as
Affymetrix HG U133 plus 2.0.

Another challenge is the oversimplification
that characterizes many of the models pro-
vided by pathway databases. In principle, each
type of tissue might have different mecha-
nisms, so generic, organism-level pathways
present a somewhat simplistic description of
the phenomena. Furthermore, signaling and
metabolic processes can also be different from
one condition to another, or even from one

patient to another. Understanding the specific
pathways that are impacted in a given pheno-
type or sub-group of patients should be another
goal for the next generation of pathway anal-
ysis tools. See Khatri et al. (2012) for a more
detailed discussion of annotation limitations
of existing knowledge bases.

Here, we focus on challenges of pathway
analysis from computational perspectives. We
demonstrate that there is a systematic bias in
pathway analysis (Nguyen, Mitrea, Tagett, &
Dréghici, 2017). This leads to the unreliability
of most if not all pathway analysis approaches.
We also discuss the lack of benchmark datasets
or pipelines to assess the performance of ex-
isting approaches.

Systematic Bias of Pathway Analysis
Methods

Pathway analysis approaches often rely on
hypothesis testing to identify the pathways that
are impacted under the effects of different dis-
eases. Null distributions are used to model
populations so that statistical tests can deter-
mine whether an observation is unlikely to oc-
cur by chance. In principle, the p-values pro-
duced by a sound statistical test must be uni-
formly distributed under the null hypothesis
(Barton, Crozier, Lillycrop, Godfrey, & Inskip,
2013; Bland, 2013; Fodor, Tickle, & Richard-
son, 2007; Storey & Tibshirani, 2003). For ex-
ample, the p-values that result from comparing
two groups using a #-test should be distributed
uniformly if the data are normally distributed
(Bland, 2013). When the assumptions of sta-
tistical models do not hold, the resulting p-
values are not uniformly distributed under the
null hypothesis. This makes classical methods,
such as 7-test inaccurate since gene expression
values do not necessary follow their assump-
tions. Here, we also show that the problem is
extended to pathway analysis, as the pathway
p-values obtained from statistical approaches
are not uniformly distributed under the null
hypothesis. This might lead to severe bias to-
wards well-studied diseases, such as cancer,
and thus make the results unreliable (Nguyen
etal., 2017).

Consider three pathway analysis methods
that represent three different classes of
methods for pathway analysis: Gene Set
Analysis (GSA; Efron & Tibshirani, 2007)
is a Functional Class Scoring method (Efron
& Tibshirani, 2007; Mootha et al., 2003;
Subramanian et al., 2005; Tarca et al.,
2012), Down-weighting of Overlapping
Genes (PADOG; Tarca et al., 2012) is an
enrichment method (Beif3barth & Speed,
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2004; Dréghici et al., 2003; Khatri, Draghici,
Ostermeier, & Krawetz, 2002), and Sig-
naling Pathway Impact Analysis (SPIA;
Tarca et al., 2009) is a topology-aware
method (Dréghici et al., 2007; Tarca et al.,
2009). To simulate the null distribution, we
download and process the data from nine
public datasets: GSE14924 CD4, GSE14924
CD8, GSE17054, GSE12662, GSE57194,
GSE33223, GSE42140, GSE8023, and
GSE15061. Using 140 control samples from
the nine datasets, we simulate 40,000 datasets
as follows. We randomly label 70 samples as
control samples and the remaining 70 samples
as disease samples. We repeat this procedure
10,000 times to generate different groups of
70 control and 70 disease samples. To make
the simulation more general, we also create
10,000 datasets consisting of 10 control and
10 disease samples, 10,000 datasets consisting
of 10 control and 20 disease samples, and
10,000 datasets consisting of 20 control
and 10 disease samples. We then calculate
the p-values of the KEGG human signaling
pathways using each of the three methods.

The effect of combining control (i.e.,
healthy) samples from different experiments
is to uniformly distribute all sources of bias
among the random groups of samples. If we
compare groups of control samples based on
experiments, there could be true differences
due to batch effects. By pooling them together,
we form a population which is considered the
reference population. This approach is simi-
lar to selecting from a large group of people
that may contain different sub-groups (e.g.,
different ethnicities, gender, race, life style,
or living conditions). When we randomly se-
lect samples (for the two random groups to
be compared) from the reference population,
we expect all bias (e.g., ethnic subgroups) to
be represented equally in both random groups,
and therefore, we should see no difference be-
tween these random groups, no matter how
many distinct ethnic subgroups were present
in the population at large. Therefore, the p-
values of a test for difference between the two
randomly selected groups should be equally
probable between zero and one.

Figure 8.25.4 displays the empirical null
distributions of p-values using PADOG, GSA,
and SPIA. The horizontal axes represent p-
values while the vertical axes represent p-
value densities. Green panels (A0-A6) show
p-value distributions from PADOG, while blue
(BO-B6) and purple (C0-C6) panels show p-
value distributions from GSA and SPIA, re-
spectively. For each method, the larger panel

Current Protocols in Bioinformatics

(A0, BO, CO) shows the cumulative p-values
from all KEGG signaling pathways. The small
panels, six per method, display extreme ex-
amples of nonuniform p-value distributions
for specific pathways. For each method, we
show three distributions severely biased to-
wards zero (e.g., A1-A3), and three distri-
butions severely biased towards one (e.g.,
A4-A6).

These results show that, contrary to gen-
erally accepted beliefs, the p-values are not
uniformly distributed for the three methods
considered. Therefore, one should expect a
very strong and systematic bias in identifying
significant pathways for each of these meth-
ods. Pathways that have p-values biased to-
wards zero will often be falsely identified as
significant (false positives). Likewise, path-
ways that have p-values biased towards one are
likely to rarely meet the significance require-
ments, even when they are truly implicated
in the given phenotype (false negatives). Sys-
tematic bias, due to nonuniformity of p-value
distributions, results in failure of the statisti-
cal methods to correctly identify the biological
pathways implicated in the condition, and also
leads to inconsistent and incorrect results.

Querying Data from Knowledge Bases

Independent research groups have tried
different strategies to model complex bio-
molecular phenomena. These independent ef-
forts have led to variation among pathway
databases, complicating the task of devel-
oping pathway analysis methods. Depending
on the database, there may be differences
in information sources, experiment interpre-
tation, models of molecular interactions, or
boundaries of the pathways. Therefore, it is
possible that pathways with the same desig-
nation and aiming to describe the same phe-
nomena may have different topologies in dif-
ferent databases. As an example, one could
compare the insulin signaling pathways of
KEGG and BioCarta. BioCarta includes fewer
nodes and emphasizes the effect of insulin on
transcription, while KEGG includes transcrip-
tion regulation as well as apoptosis and other
biological processes. Differences in graph
models for molecular interactions are partic-
ularly apparent when comparing the signal-
ing pathways in KEGG and NCI-PID. While
KEGG represents the interaction information
using the directed edges themselves, NCI-PID
introduces “process nodes” to model interac-
tions (see Fig. 8.25.2). Developers are facing
the challenge of modifying methods to accept
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Figure 8.25.4 The empirical distributions of p-values using: Down-weighting of Overlapping Genes (PADOG; top),
Gene Set Analysis (GSA; middle), and Signaling Pathway Impact Analysis (SPIA; bottom). The distributions are gener-
ated by re-sampling from 140 control samples obtained from 9 AML datasets. The horizontal axes display the p-values,
while the vertical axes display the p-value densities. Panels A0-A6 (green) show the distributions of p-values from
PADOG,; panels B0-B6 (blue) show the distribution of p-values from GSA; panels C0-C6 (purple) show the distribution
of p-values from SPIA. The large panels on the left, AO, BO, and CO, display the distributions of p-values cumulated from
all KEGG signaling pathways. The smaller panels on the right display the p-value distributions of selected individual
pathways, which are extreme cases. For each method, the upper three distributions, for example A1-A3, are biased
towards zero and the lower three distributions, for example A4-A6, are biased towards one. Since none of these p-value
distributions are uniform, there will be systematic bias in identifying significant pathways using any one of the methods.
Pathways that have p-values biased towards zero will often be falsely identified as significant (false positives). Likewise,
pathways that have p-values biased towards one are more likely to be among false negative results even if they may be
implicated in the given phenotype.

novel pathway databases or modifying the ac- KEGG Markup Language (KGML), Biolog-
tual pathway graphs to conform to the method. ical Pathway Exchange (BioPAX) Level 2

Pathway databases not only differ in the and Level 3, System Biology Markup Lan-
way that interactions are modeled, but their =~ guage (SBML), and the Biological Connec-

Network-Based data are provided in different formats as  tion Markup Language (BCML; Beltrame

Approaches for well (Chuang, Hofree, & Ideker, 2010). Com- et al, 2011). The NCI provides a uni-

Pathwzy Lle"?l mon formats are Pathway Interaction Database  fied assembly of BioCarta and Reactome, as
nalysis

eXtensible Markup Language (PID XML), well as their in-house “NCI-Nature curated

8.25.18

Supplement 61 Current Protocols in Bioinformatics




pathways,” in NCI-PID format (Schaefer et al.,
2009). In order to unify pathway databases,
pathway information should be provided in a
commonly accepted format.

Another challenge is that the same biologi-
cal pathways are represented differently from
one pathway database to another. None of the
tools is compatible with all database formats,
requiring either modification of pathway input
or alteration of the underlying algorithm in or-
der to accommodate the differences. As an ex-
ample, a study by Vaske et al. (2010) attempts
to compare SPIA (Tarca et al., 2009) with their
tool PARADIGM by re-implementing SPIA in
C and forcing its application on NCI-PID path-
ways. Implementation errors are present in the
C version of SPIA, invalidating the compar-
ison. A solution to overcome this challenge
could be the development of a unified glob-
ally accepted pathway format. Another pos-
sible solution is to build conversion software
tools that can translate between pathway for-
mats. Some attempts exist to use BIO-PAX
(Demir et al., 2010) as the lingua franca for
this domain.

Missing Benchmark Datasets and
Comparison

Newly developed approaches are typically
assessed by simulated data or by well-studied
biological datasets (Bayerlova et al., 2015;
Varadan, Mittal, Vaske, & Benz, 2012). The
advantage of using simulation is that the
ground truth is known and can be used to com-
pare the sensitivity and specificity of different
methods. However, simulation is often biased
and does not fully reflect the complexity of liv-
ing organisms. On the other hand, when using
real biological data, the biology is never fully
known. In addition, many papers presenting
new pathway analysis methods include results
obtained on only a couple of datasets, and re-
searchers are often influenced by the observer-
expectancy effect (Sackett, 1979). Thus, such
results are not objective, and many times they
cannot be reproduced.

A better evaluation approach has been pro-
posed by Tarca et al. (2013) using 42 real
datasets. This approach uses a target pathway
which is the pathway describing the condi-
tion under study available. For instance, in an
experiment with colon cancer versus healthy,
the target pathway would be the colon can-
cer pathway. The datasets are chosen so that
there is a target pathway associated with each
of the datasets. The datasets are also all pub-
lic, so other methods can be compared on the
very same data in a reproducible and objec-
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tive way. The lower the rank and the p-value
of the target pathway in the method output,
the better the method. This approach has sev-
eral important advantages including the fact
that it is reproducible and completely objec-
tive, and relies on more than just a couple of
data sets that are assessed by the authors using
the literature. This approach was also used by
Bayerlova et al. (2015), using a different set of
36 real datasets, as well by other, more recent
papers.

However, in spite of its advantages and
great superiority compared to the usual method
of only analyzing a couple of data sets, even
this benchmarking has important limitations.
First, not all conditions have a namesake path-
way in existing databases or described in the
literature. Second, complex diseases are of-
ten associated with not only one target path-
way, but with many biological processes. By
its nature, this assessment approach will ig-
nore other pathways and their ranking, even
though they may be true positives. More im-
portantly, these approaches fail to take into
consideration the systematic bias of pathway
analysis approaches. In these review papers,
most of the datasets are related to cancer. As
such, 28 out of 42 datasets used in Tarca et al.
(2013), and 26 out of 36 datasets used in Bay-
erlovaetal. (2015) are cancer datasets. In those
cases, methods that are biased towards cancer
are very likely to identify cancer pathways,
which are also the target pathways, as signifi-
cant. For this reason, the comparisons obtained
from these reviews are likely to be biased and
not reliable for assessing the performance of
existing approaches.

CONCLUSIONS

Pathway analysis is a core strategy of many
basic research, clinical research, and transla-
tional medicine programs. Emerging applica-
tions range from targeting and modeling dis-
ease networks to screening chemical or ligand
libraries, to identification of drug target inter-
actions for improved efficacy and safety. The
integration of molecular interaction informa-
tion into pathway analysis represents a major
advance in the development of mathematical
techniques aimed at the evaluation of systems
perturbations in biological entities.

This unit discussed and categorized 34
existing network-based pathway analysis ap-
proaches from different perspectives, includ-
ing experiment input, graphical representation
of pathways in knowledge bases, and statisti-
cal approaches to assess pathway significance.
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Despite being widely used, employing DE
genes as input makes the software sensitive to
cutoff parameters. Regarding the graph mod-
els, approaches using multiple types of nodes
and bipartite graphs are more flexible and
are able to model both AND and OR gates,
which are very common when describing cel-
lular processes. In addition, tools that are able
to work with multiple knowledge bases are
expected to perform better due to their com-
plementary and independent information that
cannot be obtained from individual databases.
We also pointed out that there has been no
reliable benchmark to assess and rank exist-
ing approaches. Some initial efforts to assess
pathway analysis methods in an objective and
reproducible way do exist, but they still fail to
take into account the statistical bias of existing
approaches.

Despite tremendous efforts in the field,
there are outstanding challenges that need to be
addressed. First, current pathway databases are
unable to provide transcript-level activity or
information related to new types of data, such
as SNP, mutation, or methylation. Second, in-
complete annotation and the lack of condition-
and cell-specific information hinder the accu-
racy of downstream pathway analysis. Third,
variation among pathway databases and the
lack of a standard format in which the pathway
data is provided pose a real challenge for im-
plementation. Developers are facing the chal-
lenge of modifying methods to accept novel
pathway databases or modifying the actual
pathway graphs to conform with their method.
Fourth, there is a systematic bias due to the
fact that certain conditions, such as cancer, are
much more studied than others. Using con-
trol data obtained from nine mRNA datasets,
we showed that the p-values obtained by three
pathway analysis approaches that represent
three mainstream strategies in pathway analy-
sis (FCS, enrichment, and network-based) are
not uniformly distributed under the null. Path-
ways that have p-values biased towards zero
will often be falsely identified as significant
(false positives). Likewise, pathways that have
p-values biased towards one are likely to rarely
meet the significance requirements, even when
they are truly implicated in the given phe-
notype (false negatives). Systematic bias, due
to non-uniformity of p-value distributions, re-
sults in failure of the statistical methods to
correctly identify the biological pathways im-
plicated in the condition, and also leads to
inconsistent and incorrect results.

Finally, there is a lack of benchmarks to
assess the performance of each mathematical

approach, as well as to validate existing knowl-
edge bases and their graphical representation
of pathways. There have been some efforts to
provide benchmarks for this purpose but such
methods are not fully reliable yet.
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