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Figure S1: The resilience of pair-wise connectivity. (a) The dataset consists of three classes of patients: the
first class has genes 1 — 100 up-regulated, the second class has genes 101 — 200 up-regulated, and the third
class has genes 201 — 300 up-regulated. (b) The original connectivity matrix (upper panel) and perturbed
connectivity matrix (lower panel) for k = 2 clusters. Despite setting the wrong number of subtypes (k = 2),
the perturbed connectivity matrix suggests that the data consists of three groups of samples, which is the
true structure of the data. (c) The original (upper panel) and the perturbed connectivity (lower panel)
matrices for k¥ = 10. Again, even if the number of clusters is incorrect (k = 10 this time), the perturbed
connectivity matrix still has three big blocks suggesting that the data consists of three groups of samples.
(d) The original and perturbed connectivity matrices for k = 3. The agreement between the original and
perturbed connectivity strongly suggests the structure of the data.

1 Algorithm and implementation

1.1 Connectivity resilience

Our hypothesis is that if well-defined subtypes of a disease exist, these subtypes have to be stable with
respect to small changes in the measured values. This is indeed the case and we will demonstrate that the
pair-wise connectivity between patients that truly belong to the same subtype tends to be preserved when
the data is perturbed (Figure S1). In this example, we have three distinct classes of patients (Figure Sla).
We aim to discover the subtypes with an algorithm as simple as k-means. Assuming that we do not know the
correct number of subtypes, we set the number of subtypes to k = 2. The upper panel in Figure S1b shows
the connectivity between patients after clustering: blue when they belong to the same cluster, and white
otherwise. Now we perturb the molecular measurements and repeatedly perform clustering and partition
the patients (with k& = 2). The lower panel in Figure S1b shows the combined connectivity of all perturbed
connectivities between patients. The visualization of the perturbed connectivity matrix clearly suggests that
the larger cluster is not stable. Similarly, we partition the patients using k = 10 as the number of subtypes
(Figure Slc). The discordant connectivity again states that this partitioning does not reflect the true
structure of the data. More interestingly, the perturbed connectivity matrices for both cases (lower panels
in Figure Slb,c) clearly suggest that there are three distinct classes of patients. Finally, when we set k = 3
as the number of subtypes, the perturbed and the original connectivity matrices are identical (Figure S1d).
This resilience of the patient connectivities occurs consistently regardless of the clustering algorithm being
used (e.g., k-means, hierarchical clustering, partitioning around medoids, etc.), or the distribution of the
data.



1.2 Perturbation clustering and stopping criterion

In the perturbation clustering algorithm proposed by Nguyen et al. [11], for each number of cluster k €
{2,3,...10}, perturbation process perturbs the original data then performs clustering on perturbed data in
a finite number of times n, for example, n = 200, to generate the perturbed connectivity matrices. The
algorithm then calculates the difference between the original and the perturbed connectivity matrices and
computes the empirical cumulative distribution functions of the difference matrix (CDF-DM). The area
under the CDF-DM curve AUC} is used to assess the stability of the partitioning. In the ideal case when
the original and the perturbed connectivity matrices are identical, the difference matrix consists of only zero
values, yielding a CDF-DM that jumps from 0 to 1 at the origin, and an AUC value of 1.

The perturbation clustering is very robust against noisy high-throughput data. However, the algorithm
is slow due to the large number of perturbations needed to obtain the optimal k and AUC}. For example, it
takes 25 minutes to analyze mRNA, methylation, and miRNA data of the kidney renal clear cell carcinoma
(KIRC) dataset with 124 patients. Here we optimize the algorithm to significantly reduce the analysis time.
For the same dataset (KIRC, 124 patients), the running time is reduced to less than a minute.

Figure 1C in the main text shows the AUC values after each iteration for mRNA and methylation data
of the KIRC dataset. For each data type, the AUC values tend to converge after a certain number of
iterations, which means that at some point, additional iterations are not necessary. PINSPlus makes use of
this advantage in order to determine an early stopping point for the perturbation clustering. As a result,
the iteration can stop much earlier before it reaches the maximum number of iterations but still guarantees
the quality of perturbed connectivity matrices. More specifically, the perturbation process will stop if: i)
after the first 20 iterations, there exists a k for which AUC} = 1, or ii) within all values of k, the variance
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of the last 20 iterations is smaller than 1076, i.e., E“Z“% < 1075 where p = 72“2%0 . Figure

1C1 shows the first scenario, for which all perturbation processing for every k stops when the number of
iterations ¢ = 20 because AUCy = 1. Figure 1C2 shows the second scenario for which the AUC values barely
change after 20 iterations before the stopping points (triangle symbols).

1.3 Parallel programming

PINSPlus makes use of multi-core processing to speed up the perturbation processing. The iterations in the
perturbation processing are now assigned for different cores of the CPU. Many existing clustering approaches
are sensitive to the number of threads being used, leading to different results with different numbers of
threads. PINSPlus implements multi-core feature in a way such that the result is stable regardless of the
number of cores being used.

1.4 Customizable algorithm

By default, PINSPlus uses k-means as the basic clustering algorithm and Gaussian noise as the method of
perturbation. To make PINSPlus more flexible, we also implemented hierarchical clustering and partition-
ing around medoids [7] as built-in alternatives to k-means. For advanced users, PINSPlus allows passing
any customized clustering function as a parameter. For data perturbation, we also implemented a subsam-
pling approach as an alternative method to Gaussian noise. Advanced users can also pass a customized
perturbation function as a parameter.

1.5 Cluster ensemble and two-stage clustering

Let us consider T data types from NN patients. In the first stage, PINSPlus works with each data type
to build T connectivity matrices, one for each data type. A connectivity matrix can be represented as a
graph, with patients as nodes, and connectivity between patients as edges. Our goal is to identify subgraphs
that are strongly connected across all data types. We merge the T connectivity matrices into a combined
similarity matrix that represents the overall connectivity between patients. This matrix is used as an input for
similarity-based clustering algorithms, such as hierarchical clustering and partitioning around medoids [7].
We then choose the partitioning most agrees with the partitionings of individual data types [13]. This
completes Stage I.



In Stage II, we consider each group one at a time and decide whether to split it further. We expect the
splitting algorithm to work effectively when the data has a hierarchical structure, i.e., there are subgroups
of patients within discovered subtypes. Since our method is an unsupervised approach, we do not have prior
information to take into account important covariates, such as gender, race, or demographic. If these signals
are predominant, we are likely to miss the real subtypes. Another motivation is that there are often heteroge-
neous subgroups of patients that share clinically relevant characteristics even within a subtype. One example
is that Luminal A and Luminal B are both estrogen receptor positives. If the data follows a hierarchical
structure, the distances between subgroups at the second level are smaller than those between groups at the
first level. Therefore, one-round clustering would likely overlook the subgroups within the groups identified
in Stage I. To avoid over-splitting the subtypes, we impose some conditions before proceeding to Stage II.
First, Stage I clustering has to be extremely imbalanced. Second, the splitting must be supported by a strong
signal across all data types. In both cases, it is worth reviewing the data to see if each of the discovered
groups can be further split. The software returns the result of both rounds, so users can investigate both
groupings for discovery. Figure S2 demonstrates and example using the dataset KIRC.
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Figure S2: Kaplan-Meier survival analysis for kidney renal clear cell carcinoma (KIRC). The horizontal axes
represent the time passed after entry into the study while the vertical axes represent estimated survival
percentage. The left and right panels show subtypes discovered by PINS in stage I and stage II, respectively.

1.6 Choosing a suitable clustering method

PINSPlus uses k-means as default, and it has been shown to work well in our analysis of 8 mRNA and 36
omics datasets. However, in theory, k-means is not without flaws. For example, k-means might be sensitive
to outliers and is not designed to discover hierarchical data structures. Therefore, we provide pam and hclust
as alternative build-in algorithms. We will show examples in which one method performs well in one scenario
might not be the best choice in another scenario. We note that these examples are not supposed to provide a
thorough comparison between the three methods (k-means, hclust, and pam), but to provide some guidance
for a better use of PINSPlus.

Generally, if the groups are well separated, any clustering algorithm would perform well. This ideal
scenario is shown in Figure S3a. In this example, there are 3 groups of samples with different sets of up-
regulated genes. The expression values of the up-regulated genes are very different from those of un-regulated
genes. As shown in the first 2 principal components, the groups are well separated. All of the three methods
perform well in this ideal case.

When the distances between the groups decrease, we notice that k-means is a more robust choice. As
shown in Figure S3b, k-means performs very well even when the three groups are close to one another. One
likely reason is that the cluster centers are very stable to data perturbation. When the data is perturbed,
each data point moves around its original position. However, these random effects from multiple data points
are canceled out and the cluster centers do not vary drastically, leading to a very stable k-means grouping.



Since hclust tries to force the data into a hierarchy, the structure changes every time the data is perturbed.
Therefore, hclust tends to increase the number of clusters to seek for stability. The algorithm pam differs
from k-means in the way that it uses medoids to represent clusters (instead of arithmetic centers). When
the data is perturbed, the medoids move around and are unstable, leading to unstable pam groupings.

In some cases, when the data has a hierarchical structure, hclust is expected to perform better than
k-means. If the data follows a hierarchical structure, the distances between subgroups at the second level are
smaller than the distances between groups at the first level. Therefore, k-means probably can only identify
the groups at the first level. Figure S3c¢ shows an example in which the distance between groups 2 and 3 and
between groups 4 and 5 are much smaller than the distance between group 1 and the rest. As shown in the
principal components, the difference between groups 2 and 3 are not distinguishable when we look at the
data altogether. In this case, both k-means and pam are unable to discover the true structure of the data.
On the contrary, hclust perfectly separates the groups.

Figure S3d shows an example in which pam is the best choice. Note that in this scenario, the data are
well separated and each group has approximately the same number of data points. We added some outliers
in order to test the robustness of each clustering method. In this case, pam provides a perfect grouping while
k-means and hclust are sensitive to outliers and are unable to identify the correct number of groups.

2 Data processing

2.1 Gene expression data

For this single data type analysis, we download 8 gene expression datasets, from a variety of human can-
cers with known classes (subtypes). Details of the 8 datasets are described in Table S1. The 5 datasets
GSE10245, GSE19188, GSE43580, GSE15061, and GSE14924 were downloaded from Gene Expression Om-
nibus (www.ncbi.nlm.nih.gov/geo/). The other three datasets were downloaded from the Broad Insti-
tute: Lung2001 (www.broadinstitute.org/mpr/lung/), AML2004 (www.broadinstitute.org/cancer/
pub/nmf), and Brain2002 (www.broadinstitute.org/MPR/CNS/). The dataset AML2004 was already pro-
cessed and normalized and thus no further data processing was needed. For the other 7 datasets, Affymetrix
CEL files containing raw expression data were downloaded and processed and normalized using the threestep
function from the package affyPLM version 1.38.0 [2].

Table S1: Description of the eight mRNA datasets used in our analysis. The top five datasets were down-
loaded from the Gene Expression Omnibus. The bottom three datasets were downloaded from the Broad
Institute website.

Datasets #Class #Sample #Feature Platform Description

GSE10245 [8] 2 58 19851 hgul33plus2 40 adenocarcinomas and 18 squamous cell carcinomas

GSE19188 [6] 3 91 19851 hgul33plus2 45 adenocarcinomas, 19 large cell carcinomas, and 27 squa-
mous cell carcinomas

GSE43580 [14] 2 150 19851 hgul33plus2 77 adenocarcinomas and 73 squamous cell carcinomas

GSE14924 [9] 2 20 19851 hgul33plus2 10 acute myeloid leukemia CD4 T cell and 10 CD8 T cell

GSE15061 [10] 2 366 19851 hgul33plus2 202 acute myeloid leukemia samples and 164 myelodyplastic
syndrome samples

Lung2001 [1] 4 237 8641 hgu95a 190 adenocarcinomas, 21 squamous cell carcinomas, 20 car-
cinoid, and 6 small-cell lung carcinomas

AML2004 [5, 3] 3 38 5000 hgu6800 11 acute myeloid leukemia, 19 acute lymphoblastic leukemia
B cell, and 8 T cell

Brain2002 [12] 5 42 5299 hgu6800 10 meduloblastomas, 10 malignant gliolas, 10 atypical tera-

toid/rhaboid tumors, 4 normal cerebellums, and 8 primitive
neuroectodermal tumors

2.2 TCGA and METABRIC data

We analyzed 34 different types of cancer with curated level three data, available at The Cancer Genome Atlas
datasets (TCGA) website (cancergenome.nih.gov and firebrowse.org): Kidney renal clear cell carcinoma
(KIRC), Glioblastoma multiforme (GBM), Acute Myeloid Leukemia (LAML), Lung squamous cell carci-
noma (LUSC), Bladder Urothelial Carcinoma (BLCA), Head and Neck squamous cell carcinoma (HNSC),
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Figure S3: Examples to demonstrate the strength and weakness of each clustering method. In each row,
the most left panel shows the data while the three remaining panels show the clustering results of PINSPlus
in conjunction with k-means, pam, and hclust, respectively. (a) All clustering methods perform well when
the clusters are well-separated. (b) k-means outperforms other methods when the clusters are close to one
another. (c¢) When the data has a hierarchical structure, hclust should be the best choice. (d) In presence
of outliers, pam outperforms k-means and hclust.



Liver hepatocellular carcinoma (LIHC), Stomach adenocarcinoma (STAD), Thymoma (THYM), Glioma
(GBMLGG), Brain Lower Grade Glioma (LGG), Pancreatic adenocarcinoma (PAAD), Skin Cutaneous
Melanoma (SKCM), Colorectal adenocarcinoma (COADREAD), Uterine Corpus Endometrial Carcinoma
(UCEQ), Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), Colon adenocarci-
noma (COAD), Breast invasive carcinoma (BRCA), Stomach and Esophageal carcinoma (STES), Kidney
renal papillary cell carcinoma (KIRP), Kidney Chromophobe (KICH), Uveal Melanoma (UVM), Adreno-
cortical carcinoma (ACC), Sarcoma (SARC), Mesothelioma (MESO), Rectum adenocarcinoma (READ),
Uterine Carcinosarcoma (UCS), Ovarian serous cystadenocarcinoma (OV), Esophageal carcinoma (ESCA),
Paraganglioma (PCPG), Lung adenocarcinoma (LUAD), Prostate adenocarcinoma (PRAD), Thyroid carci-
noma (THCA), and Testicular Germ Cell Tumors (TGCT). We used mRNA expression, DNA methylation,
and miRNA expression data for each of the 34 cancers. Table S3 shows the details of each dataset.

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data [4] consists of
a discovery cohort (997 patients) and a validation cohort (983 patients). For each of these patients, matched
DNA and RNA were subjected to copy number analysis and transcriptional profiling on the Affymetrix SNP
6.0 and Illumina HT 12 v3 platforms, respectively. We downloaded the mRNA and copy number variation
(CNV) data from the European Genome-Phenome Archive (www.ebi.ac.uk/ega/) and high quality follow
up clinical data from cBioPortal (www.cbioportal.org). There are patients that were followed up upon for
almost 30 years. The only preprocessing done was mapping CNVs to genes using the CNTools package [15].

3 Experimental results
The data analysis is done on a Debian Linux server that has 376GB of RAM, and multi-core CPU (32 cores,

2 sockets, 16 cores/socket, 2 threads/core, Intel Xeon Gold 6130, 2.10GHz). The R session and packages
information is presented as below:

e R version 3.4.3 (2017-11-30), x86_64-pc-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Running under: Ubuntu 16.04.4 LTS

e Matrix products: default

e BLAS: /usr/1ib/libblas/libblas.s0.3.6.0

o LAPACK: /usr/local/1ib/R/1lib/1libRlapack.so

e Base packages: base, datasets, graphics, grDevices, grid, methods, parallel, stats, stats4, utils

e Other packages: cluster 2.0.7-1, ConsensusClusterPlus 1.46.0, doParallel 1.0.11, entropy 1.2.1,
flexclust 1.3-5, foreach 1.4.4, future 1.8.0, iClusterPlus 1.18.0, iterators 1.0.9, lattice 0.20-35,
modeltools 0.2-21, pbmcapply 1.2.4, PINSPlus 1.0.2, SNFtool 2.3.0, survival 2.42-3

e Loaded via a namespace (and not attached): Biobase 2.38.0, BiocGenerics 0.24.0,
codetools 0.2-15, compiler 3.4.3, digest 0.6.15, globals 0.11.0, heatmap.plus 1.3, listenv 0.7.0,
Matrix 1.2-14, splines 3.4.3, tools 3.4.3

3.1 Gene expression data

In order to validate PINSPIlus with single data type analysis, we first tested it using eight real datasets
with known subtypes from Gene Expression Omnibus and Broad Institute. Table S4 presents the results



Table S2: Description of the 34 datasets from The Cancer Genome Atlas (TCGA)

Dataset #Sample mRNA Methylation miRNA

KIRC 124 HiSeq RNASeq Methylation27 GASeq miRNASeq
GBM 273 HT HG-U133A Methylation27 HiSeq miRNASeq
LAML 164 GASeq RNASeq Methylation27 GASeq miRNASeq
LUSC 110 HT HG-U133A Methylation27 GASeq miRNASeq
BLCA 404 HiSeq RNASeq v2 Methylation450  GASeq miRNASeq
HNSC 228 HiSeq RNASeq Methylation450 HiSeq miRNASeq
LIHC 366 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
STAD 362 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
THYM 654 HiSeq RNASeq v2 Methylation450 GASeq miRNASeq
GBMLGG 654 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
LGG 510 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
PAAD 178 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
SKCM 439 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
COADREAD 294 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
UCEC 234 GASeq RNASeq v2  Methylation450 HiSeq miRNASeq
CESC 304 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
COAD 220 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
BRCA 622 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
STES 545 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
KIRP 271 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
KICH 65 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
UVM 80 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
ACC 79 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
SARC 257 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
MESO 86 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
READ 74 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
ucCs 56 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
oV 286 HiSeq RNASeq v2 Methylation27 HiSeq miRNASeq
ESCA 183 HiSeq RNASeq Methylation450 HiSeq miRNASeq
PCPG 179 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
LUAD 428 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
PRAD 493 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
THCA 499 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq
TGCT 134 HiSeq RNASeq v2 Methylation450 HiSeq miRNASeq

Table S3: Description of the 2 datasets from The Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC): METABRIC discovery and METABRIC validation.

Dataset #Sample mRNA CNV
Discovery 997 Hlumina HT 12 v3  Affymetrix SNP 6.0
Validation 983 Illumina HT 12 v3  Affymetrix SNP 6.0




produced from PINSPlus, CC, SNF, and iClusterPlus. We note that for iCluster Plus datasets, only the
top 4000 components were used due to its time complexity.

Table S4: The performance of PINS, PINSPlus, Consensus Clustering (CC), Similarity Network Fusion
(SNF), and iClusterPlus in discovering subtypes from gene expression data. For each dataset (row), cells
highlighted in green have the highest Rand Index (RI), and Adjusted Rand Index (ARI). For all 8 datasets,
PINSPlus outperforms its competitors by having the highest RI and ARI. SNF produced an error for
GSE14924, and iClusterPlus produced an error for AMIL2004, shown as an NA value.

Dataset PINS/PINS+ CcC SNF iCluster+
Name Samples #Class k RI ARI k RI ARI k RI ARI k RI ARI
GSE10245 58 2 2 0.90 0.80 6 0.64 0.32 2 0.69 0.38 4 0.58 0.22
GSE19188 91 3 3  0.84 0.66 4 0.82 0.6 4 0.61  0.12 9 0.67  0.19
GSE43580 150 2 2 0.72 0.44 3 0.68 0.37 2 0.58 0.15 5 0.61 0.21
GSE15061 366 2 2 0.83 0.65 6 0.72 043 2 0.53  0.05 10 0.57 0.15
GSE14924 20 2 2 1.00 1.00 7 064 0.25 NA NA NA 3 0.87 0.73
Lung2001 237 4 2 082 0.54 8 046 0.11 3 0.62  0.28 7 0.45 0.11
AML2004 38 3 4 0.85 0.65 5 0.81 0.56 2 0.59  0.17 NA NA NA
Brain2002 42 5 7 089 0.61 5 0.8 0.46 2 0.57 0.13 4 0.74 0.32

3.2 TCGA and METABRIC data

To validate PINSPlus using multi-omics data, we tested it using 34 TCGA datasets and two METABRIC
datasets. The results are reported in Table 1 of the main text. There are 9 datasets for which no method
is able to identify subtypes with significantly different survival (READ, UCS, OV, ESCA, PCPG, LUAD,
PRAD, THCA, TGCT). For the remaining 27 datasets, PINSPlus has significant p-values in all of them
whereas CC, SNF, and iClusterPlus has significant p-values in only in 8, 14, and 9 datasets, respectively.
More importantly, PINSPlus has the most significant p-values in 23 datasets (out of 27).

3.3 Running time

Table S5 shows the running time of each method for the 34 datasets. For gene expression data, PINSPlus,
CC, and SNF can finish each analysis in less than a minute while it takes iClusterPlus several hours. The
gap in running time is much larger for data integration. PINSPlus, CC, and SNF can integrate omics data
and partition hundreds of patients in minutes while iClusterPlus (with 60 cores) takes up to many hours to
analyze large datasets.



Table S5: Running time of each subtyping method. The time is rounded to minutes (min). CC and SNF can
only run on 1 core while PINSPlus and iClusterPlus allow for parallel computing.

Consortium Dataset #Patient PINS PINS+ CcC SNF iCluster+
1 core 2 cores 1 core 1 core 60 cores

GSE10245 58 <lm <lm <lm <lm 19m
GSE19188 91 1m <lm <lm <lm 29m
GSE43580 150 2m <lm <lm <lm 50m
GSE15061 366 12m <lm <lm <lm 100m
GEO&Broad 914994 20 <lm <lm <lm <Im 9m
Lung2001 237 5m <lm <lm <lm 58m
AML2004 38 <lm <lm <lm <lm NA
Brain2002 42 <lm <lm <lm <lm 16m
KIRC 124 6m <lm <lm <lm 95m
GBM 273 53m 1m <lm <lm 190m
LAML 164 10m <lm <lm <lm 123m
LUSC 110 5m <lm <lm <lm 59m
BLCA 404 112m 6m 3m 3m 433m
HNSC 228 32m 4m 3m 2m 101m
LIHC 366 96m 5m 4m 3m 263m
STAD 362 97m 5m 4m 3m 299m
THYM 119 6m 1m 2m 1m 95m
GBMLGG 510 192m 7m Tm 4m 392m
LGG 510 188m 12m 8m 6m 274m
PAAD 178 20m 3m 2m 1m 176m
SKCM 439 144m 8m 3m 3m 202m
COADREAD 294 61m 5m 4m 3m 157m
UCEC 234 34m 4m 4m 2m 201m
CESC 304 60m Tm 5m 2m 203m
TCGA COAD 220 30m 3m 3m 2m 126m
BRCA 622 236m 16m 10m 5m 285m
STES 545 171m 12m 14m 5m 324m
KIRP 271 33m 3m 3m 1m 184m
KICH 65 4m 1m 1m <lm 58m
UVM 80 3m 1m 1m 1m 7lm
ACC 79 3m 1m 1m <lm 63m
SARC 257 43m 5m 3m 1m 201m
MESO 86 4m 1m 2m <lm 72m
READ 74 3m 1m 2m <lm 52m
uUcs 56 2m 1m 1m <lm 32m
ov 286 52m 2m 2m 1m 188m
ESCA 183 23m 5m 5m 2m 204m
PCPG 179 16m 2m 3m 1m 244m
LUAD 428 128m 8m 5m 3m 233m
PRAD 493 205m 11m 10m 5m 276m
THCA 499 213m 10m 5m 3m 251m
TGCT 134 9m 2m 2m 1m 105m
Discovery 997 1153m 9m 15m 2m 350m
METABRIC Validation 983 581m 8m 14m 2m 348m
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