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1 Methods

1.1 Fisher’s method

Fisher’s method [8] is one of the most widely used methods for combining independent p-values. Considering a set of
m independent significance tests, the resulting p-values P1, P2, . . . , Pm are independent and uniformly distributed
on the interval [0, 1] under the null hypothesis. Denoting Xi = −2 lnPi (i ∈ {1, 2, . . . ,m}) as new random variables,
the cumulative distribution function of Xi can be calculated as follows:

Fi(x) = Pr(Xi ≤ x) = Pr(−2 lnPi ≤ x) = Pr(Pi ≥ e
x
2 )

=

∫ 1

e
− x

2

f(p)dp = 1− e−
x
2

The above function is the cumulative distribution function of a chi-squared distribution with two degrees of
freedom (χ2

2). Since the sum of chi-squared random variables is also a chi-squared random variable, −2
∑m

i=1
ln(Pi)

follows a chi-squared distribution with 2m degrees of freedom (χ2
2m). In summary, the log product of m independent

p-values follows a chi-squared distribution with 2m degrees of freedom:

X = −2

m∑
i=1

ln(Pi) ∼ χ2
2m (1)

We note that if one of the individual p-values approaches zero, which is often the case for empirical p-values, then
the combined p-value approaches zero as well, regardless of other individual p-values. For example, if P1 → 0, then
X →∞ and therefore, Pr(X)→ 0 regardless of P2, P3, . . . , Pm. Therefore, we see that Fisher’s method is sensitive
to outliers.

1.2 add-CLT

The additive method [9, 11, 7] uses the sum of the p-values as the test statistic, instead of the log product. Let
us denote the p-values resulting from the m independent significance tests as P1, P2, . . . , Pm. These p-values are
independent and uniformly distributed between zero and one under the null (i.e. all p-values between zero and one
are equally probable when the null hypothesis is true). Denote the sum of these p-values, X =

∑m

i=1
Pi (X ∈ [0,m]),

as the new random variable. X is known to follow the Irwin-Hall distribution [9, 11] with the following probability
density function (pdf):

f(x) =
1

(m− 1)!

bxc∑
i=0

(−1)i
(
m

i

)
(x− i)m−1 (2)

Unlike Fisher’s method, the additive method is not sensitive to small individual p-values. However, we note that
the additive method faces a different practical problem. For large values of m, Equation (2) involves some intensive
computation due to a sum of combinatorial and division by a factorial, the result of which can lead to an “arithmetic
underflow”. Here we describe an enhancement to the additive method that makes it more reliable for larger values of
m. First, we change the random variable from the sum of the p-values to the average of the p-values. Second, when
m is large, we replace the additive method with the Central Limit Theorem (CLT). The reason for the modification
is that the additive method is accurate for small values of m, while the Central Limit Theorem is more accurate for
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large values of m. We select m = 20 as a conservative cut-off. In other words, we will use the additive method when
m < 20, and the Central Limit Theorem when m ≥ 20.

To show the validity of using the Central Limit Theorem for largem, we define a new random variable Y =

∑m

i=1
Pi

m

(Y ∈ [0, 1]), which is the average of p-values. Since Y = X
m

, we can derive the probability density function (pdf) of
Y using a linear transformation of X as follows:

g(y) =
m

(m− 1)!

bm·yc∑
i=0

(−1)i
(
m

i

)
(m · y − i)m−1 (3)

The corresponding cumulative distribution function (cdf) can be calculated as:

G(y) =
1

m!

bm·yc∑
i=0

(−1)i
(
m

i

)
(m · y − i)m (4)

The variable Y is the mean of m independent and identically distributed (i.i.d.) random variables (the p-values
from each individual experiment), that follow a uniform distribution with a mean of 1

2
and a variance of 1

12
. From

the Central Limit Theorem [12], the average of such m i.i.d. variables follows a normal distribution with mean µ = 1
2

and variance σ2 = 1
12m

, i.e. Y ∼ N ( 1
2
, 1
12m

) for sufficiently large values of m.

1.3 Standardized mean difference

Consider a study composed of two independent groups, and suppose we wish to compare their means for a given
gene. Let X̄1 and X̄2 represent the sample means for that gene in the two groups, n1 and n2 the number of samples
in each group, and Spooled the pooled standard deviation of the two groups. The pooled standard deviation and the
standardized mean difference (SMD) can be estimated as:

Spooled =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
(5)

d =
X̄1 − X̄2

Spooled
(6)

The estimation of the standardized mean difference described in Equation (6) is often called Cohen’s d [4, 3]. The
variance of Cohen’s d is given as follows:

Vd =
n1 + n2

n1n2
+

d2

2(n1 + n2)
(7)

In the above equation, the first term reflects uncertainty in the estimate of the mean difference, and the second
term reflects uncertainty in the estimate of Spooled. The standard error of d is the square root of Vd. We note that
Cohen’s d, which is based on sample averages, tends to overestimate the population effect size for small samples. Let
n be the degrees of freedom used to estimate Spooled, i.e. n = n1 +n2−2. The corrected effect size, or Hedges’ g [10],
can be computed as follows:

J =
Γ(n

2
)√

n
2

Γ(n−1
2

)
(8)

g = J · d (9)

where Γ is the gamma function. In this work, we use Hedge’ g as the standardized mean difference (SMD) between
disease and control groups for each gene/miRNA.

1.4 False Discovery Rate (FDR)

Throughout the manuscript, we use the Benjamini-Hochberg procedure [1] to adjust the p-values for multiple com-
parisons. This procedure can be executed using the function p.adjust (p, method=“fdr”) (CRAN stats package)
where p is the vector of p-values obtained for all pathways. Notably, this method does not involve permutation or
bootstrapping. The p-values are first sorted and ranked. Then, each p-value is multiplied by N (the number of
pathways) and divided by its assigned rank to give the adjusted p-values.
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2 Results

2.1 Experimental data

We use 182 human signaling pathways extracted as graph objects from KEGG. We use expression data related
to Alzheimer’s disease (10 datasets), influenza (9 datasets), and acute myeloid leukemia (8 datasets), available
at https://www.ncbi.nlm.nih.gov/geo/. The total number of samples is 1,737. Table S1 shows the summary
information for each dataset, including number of samples, platforms, tissues, etc.

For each dataset, we process the raw data using the threestep function from the package affyPLM [2]. The
parameters used for the threestep function are: robust multi-array analysis (RMA) background adjustment, quantile
normalization, and median polish summarization. If the raw data are not available, we use the data that are already
processed and normalized by the data providers.

For subtyping purpose, we also download RNA-Seq data for AML patients. The processed data are available at
the Broad Institute’s website http://gdac.broadinstitute.org/. The total number of patients for this cohort is
167 and the number of genes is 20,100. We also download the vital status and follow-up information from the same
website. The survival information is used to plot the Kaplan-Meier survival curves and to calculate the Cox p-values.

Table S1: Description of the 27 gene expression datasets used in the experimental studies. All of the datasets are available at
https://www.ncbi.nlm.nih.gov/geo/.

Dataset Disease Control Case Tissue Platform

1 GSE1297 Alzheimer’s 9 22 Hippocampus Affymetrix Human U133A
2 GSE4757 Alzheimer’s 10 10 Entorhinal cortex Affymetrix Human U133+ 2.0
3 GSE5281 Alzheimer’s 74 87 Entorhinal cortex, medial temporal gyrus, Affymetrix Human U133+ 2.0

posterior cingulate, superior frontal gyrus,
hippocampus, and primary visual cortex

4 GSE12685 Alzhiemer’s 8 6 Frontal cortex Affymetrix Human U133A
5 GSE16759 Alzheimer’s 4 4 Parietal lobe Affymetrix Human U133+ 2.0
6 GSE18309 Alzheimer’s 3 3 Peripheral blood mononuclear cell Affymetrix Human U133+ 2.0
7 GSE28146 Alzheimer’s 8 22 Hippocampus Affymetrix Human U133+ 2.0
8 GSE36980 Alzheimer’s 47 32 Frontal cortex, temporal cortex, Affymetrix Human 1.0 ST

and hippocampus
9 GSE39420 Alzheimer’s 7 14 Brain tissues Affymetrix Human 1.1 ST

10 GSE48350 Alzheimer’s 173 80 Entorhinal cortex, post-central gyrus, Affymetrix Human U133+ 2.0
hippocampus, and superior frontal gyrus

11 GSE42026 Influenza 33 19 Whole blood Illumina HumanHT-12 3.0
12 GSE40012 Influenza 36 39 Whole blood Illumina HumanHT-12 3.0
13 GSE29366 Influenza 12 19 Whole blood Illumina HumanWG-6 3.0
14 GSE17156 Influenza 17 17 Peripheral blood Affymetrix Human U133A 2.0
15 GSE21802 Influenza 4 36 Blood Illumina human-6 2.0
16 GSE27131 Influenza 7 7 Blood Affymetrix Human 1.0
17 GSE71766 Influenza 51 45 Human bronchial epithelial cells Affymetrix Human U219
18 GSE34205 Influenza 22 28 Peripheral blood mononuclear cells Affymetrix Human U133+ 2.0
19 GSE82050 Influenza 15 24 Blood Agilent SurePrint G3 Human 3.0

20 GSE982 AML 6 9 AML cells, monocytes, and neutrophils Affymetrix Human U133A
21 GSE12662 AML 30 76 CD34+ cells, promyelocytes, neutrophils, Affymetrix Human U133+ 2.0

and PR9 cell line
22 GSE15061 AML 69 202 Bone marrow Affymetrix Human U133+ 2.0
23 GSE33223 AML 10 20 Peripheral blood mononuclear cell Affymetrix Human U133+ 2.0
24 GSE35010 AML 16 15 Hematopoietic stem cells and Affymetrix Human 1.0

granulocytic monocytic progenitors
25 GSE37307 AML 19 30 CD34+, hematopoietic, and testis cells Affymetrix Human U133A
26 GSE63270 AML 42 62 Bone marrow Affymetrix Human U133+ 2.0
27 GSE68172 AML 5 72 Blood Affymetrix Human U133+ 2.0

2.2 Pathway analysis

Here we use 10 different integrative approaches to identify the impacted pathways of the 27 datasets: the proposed
NBIA, 6 GSA-, GSEA-, and IA-related approaches, and 3 MetaPath methods. For implementation of the NBIA, we
used functions from the following R packages: BLMA [16, 15, 14], ROntoTools [25], limma [20], and metafor [24].
NBIA will be available in the package BLMA’s next release.

The top pathways of NBIA are shown in Tables 1, 2, and 3 in the main text while those of the other 9 methods
are shown in Tables S2, S3, and S4 in this supplemental document.

https://www.ncbi.nlm.nih.gov/geo/
http://gdac.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/geo/
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Table S2: The 20 top ranked pathways and FDR-corrected p-values obtained by combining Alzheimer’s data using 9 different
approaches: 3 MetaPath methods and 6 GSA-, GSEA-, and IA-related approaches. The horizontal line shows the 5% cutoff.
The pathways Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease are highlighted in green. MetaPath P, Meta-
Path G, and MetaPath I fail to identify the target pathway Alzheimer’s disease as significant, and rank it at the positions 74th,
81st, and 58th, respectively. The other six methods, GSA+Fisher, GSA+addCLT, GSEA+Fisher, GSEA+addCLT, IA+Fisher,
and IA+addCLT, rank the target pathway at the positions 32nd, 10th, 27th, 13nd, 55th, and 96th, respectively.

MetaPath P MetaPath G MetaPath I

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Circadian rhythm 0.2290 Type II diabetes mellitus 0.1510 Long-term depression 0.2992
2 Long-term depression 0.2537 Renin-angiotensin system 0.3365 Type II diabetes mellitus 0.3020
3 Renal cell carcinoma 0.2589 Circadian rhythm 0.4123 Circadian rhythm 0.3210
4 Allograft rejection 0.2658 Thyroid cancer 0.4975 Dorso-ventral axis formation 0.3405
5 VEGF signaling pathway 0.2758 Acute myeloid leukemia 0.5068 Allograft rejection 0.3480
6 Gap junction 0.2777 Parkinson’s disease 0.7621 Renal cell carcinoma 0.3751
7 African trypanosomiasis 0.3056 Amoebiasis 0.7627 Acute myeloid leukemia 0.3758
8 Shigellosis 0.3222 RNA transport 0.7639 Gap junction 0.3819
9 NF-kappa B signaling pathway 0.3308 Natural killer cell mediated cyto-

toxicity
0.7645 VEGF signaling pathway 0.3884

10 Dorso-ventral axis formation 0.3460 Small cell lung cancer 0.7660 African trypanosomiasis 0.4143
11 Type II diabetes mellitus 0.4171 Rheumatoid arthritis 0.7663 Thyroid cancer 0.4287
12 Endocrine and other factor-

regulated calcium reabsorption
0.4350 Aldosterone synthesis and secretion 0.7680 Endocrine and other factor-

regulated calcium reabsorption
0.4295

13 Long-term potentiation 0.4376 Proteoglycans in cancer 0.7680 Renin-angiotensin system 0.4413
14 Epithelial cell signaling in Heli-

cobacter pylori infection
0.5466 Basal cell carcinoma 0.7681 NF-kappa B signaling pathway 0.4641

15 Glutamatergic synapse 0.5494 p53 signaling pathway 0.7682 Shigellosis 0.4692
16 Glioma 0.5576 Vibrio cholerae infection 0.7713 Bladder cancer 0.5827
17 Glucagon signaling pathway 0.5612 AGE-RAGE signaling pathway in

diabetic complications
0.7718 Long-term potentiation 0.5969

18 Acute myeloid leukemia 0.5643 mTOR signaling pathway 0.7741 mTOR signaling pathway 0.6023
19 Antigen processing and presenta-

tion
0.5660 Cholinergic synapse 0.7742 Graft-versus-host disease 0.6234

20 Inflammatory mediator regulation
of TRP channels

0.5782 Complement and coagulation cas-
cades

0.7743 Epithelial cell signaling in Heli-
cobacter pylori infection

0.7282

GSA+Fisher GSA+addCLT GSEA+Fisher

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Retrograde endocannabinoid sig-
naling

0 Retrograde endocannabinoid sig-
naling

0.0036 Ribosome biogenesis in eukaryotes 0

2 Toxoplasmosis 0 Toxoplasmosis 0.0067 Serotonergic synapse 0
3 Long-term depression 0 GABAergic synapse 0.0067 Glutamatergic synapse 0
4 Gap junction 0 Morphine addiction 0.0067 GnRH signaling pathway 0
5 Amphetamine addiction 0 Long-term depression 0.0067 GABAergic synapse 0
6 Vasopressin-regulated water reab-

sorption
0 Glutamatergic synapse 0.0072 Oocyte meiosis 0

7 Staphylococcus aureus infection 0 Gap junction 0.0085 Calcium signaling pathway 0
8 Small cell lung cancer 0 Endocrine and other factor-

regulated calcium reabsorption
0.0117 Amphetamine addiction 0

9 cAMP signaling pathway 0 Oxytocin signaling pathway 0.0117 VEGF signaling pathway 0
10 Pathogenic Escherichia coli infec-

tion
0 Alzheimer’s disease 0.0117 Aldosterone-regulated sodium reab-

sorption
0

11 Platelet activation 0 Huntington’s disease 0.0117 Choline metabolism in cancer 0
12 Phospholipase D signaling pathway 0 Synaptic vesicle cycle 0.0117 Dopaminergic synapse 0
13 Adipocytokine signaling pathway 0 Dopaminergic synapse 0.0124 Amyotrophic lateral sclerosis (ALS) 0
14 Ovarian steroidogenesis 0 Circadian entrainment 0.0124 Parkinson’s disease 0
15 Maturity onset diabetes of the

young
0 Cardiac muscle contraction 0.0129 Sphingolipid signaling pathway 0

16 mRNA surveillance pathway 0 Inflammatory bowel disease (IBD) 0.0140 Cytokine-cytokine receptor interac-
tion

0

17 Chemokine signaling pathway 0 Epithelial cell signaling in Heli-
cobacter pylori infection

0.0140 Carbohydrate digestion and ab-
sorption

0

18 Glutamatergic synapse 0.0001 Vibrio cholerae infection 0.0174 Taste transduction 0
19 Synaptic vesicle cycle 0.0002 Allograft rejection 0.0179 Osteoclast differentiation 0
20 Dopaminergic synapse 0.0003 Serotonergic synapse 0.0179 Autoimmune thyroid disease 0

GSEA+addCLT IA+Fisher IA+addCLT

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Ribosome biogenesis in eukaryotes 6e-05 Synaptic vesicle cycle 4e-24 Phagosome 4e-05
2 Serotonergic synapse 0.0002 GABAergic synapse 1e-20 Rheumatoid arthritis 0.0001
3 Glutamatergic synapse 0.0002 Retrograde endocannabinoid sig-

naling
1e-18 Proteoglycans in cancer 0.0001

4 Adrenergic signaling in cardiomy-
ocytes

0.0002 Glutamatergic synapse 5e-17 Ras signaling pathway 0.0033

5 GnRH signaling pathway 0.0003 Phagosome 4e-14 Synaptic vesicle cycle 0.0033
6 GABAergic synapse 0.0007 Gastric acid secretion 2e-13 cGMP-PKG signaling pathway 0.0096
7 Circadian entrainment 0.0007 Morphine addiction 1e-12 Glutamatergic synapse 0.0148
8 Non-alcoholic fatty liver disease

(NAFLD)
0.0014 Cholinergic synapse 3e-12 Circadian entrainment 0.0148

9 Oocyte meiosis 0.0015 Circadian entrainment 2e-11 Retrograde endocannabinoid sig-
naling

0.0148

10 Calcium signaling pathway 0.0015 Amphetamine addiction 2e-10 Oxytocin signaling pathway 0.0148
11 Huntington’s disease 0.0017 Dopaminergic synapse 3e-10 MAPK signaling pathway 0.0148
12 Amphetamine addiction 0.0018 Rheumatoid arthritis 7e-10 GABAergic synapse 0.0189
13 Alzheimer’s disease 0.0018 Calcium signaling pathway 2e-09 Endocytosis 0.0189
14 VEGF signaling pathway 0.0038 MAPK signaling pathway 3e-09 Adrenergic signaling in cardiomy-

ocytes
0.0212

15 Signaling pathways regulating
pluripotency of stem cells

0.0038 Long-term potentiation 5e-09 HIF-1 signaling pathway 0.0212

16 Retrograde endocannabinoid sig-
naling

0.0038 Neuroactive ligand-receptor inter-
action

9e-09 cAMP signaling pathway 0.0326

17 Cardiac muscle contraction 0.0038 Staphylococcus aureus infection 1e-08 Morphine addiction 0.0526
18 Aldosterone-regulated sodium reab-

sorption
0.0063 Oxytocin signaling pathway 1e-08 Platelet activation 0.0665

19 Choline metabolism in cancer 0.0063 Serotonergic synapse 1e-08 Axon guidance 0.0720
20 Endocrine and other factor-

regulated calcium reabsorption
0.0073 Axon guidance 1e-08 Endocrine and other factor-

regulated calcium reabsorption
0.0720
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Table S3: The 20 top ranked pathways and FDR-corrected p-values obtained by combining influenza data using 9 different
approaches: 3 MetaPath methods and 6 GSA-, GSEA-, and IA-related approaches. The horizontal line shows the 5% cutoff.
The target pathway Influenza A is highlighted in green. GSA+Fisher, GSEA+addCLT, IA+Fisher, and IA+addCLT identify
the target pathway as significant and rank it at the positions 13th, 37rd, 1st, and 2nd, respectively.

MetaPath P MetaPath G MetaPath I

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Pancreatic cancer 0.0465 Intestinal immune network for IgA
production

0.0360 Pancreatic cancer 0.0540

2 Staphylococcus aureus infection 0.0603 mTOR signaling pathway 0.0570 Intestinal immune network for IgA
production

0.0635

3 Intestinal immune network for IgA
production

0.0760 Asthma 0.0630 Staphylococcus aureus infection 0.0636

4 Vibrio cholerae infection 0.0762 Staphylococcus aureus infection 0.2028 mTOR signaling pathway 0.0772
5 T cell receptor signaling pathway 0.0815 Allograft rejection 0.2306 T cell receptor signaling pathway 0.0968
6 Peroxisome 0.0906 Leishmaniasis 0.2468 Vibrio cholerae infection 0.1026
7 Progesterone-mediated oocyte mat-

uration
0.1098 RNA transport 0.2750 Asthma 0.1120

8 NF-kappa B signaling pathway 0.1111 Antigen processing and presenta-
tion

0.2856 Peroxisome 0.1161

9 Epstein-Barr virus infection 0.1386 mRNA surveillance pathway 0.4016 NF-kappa B signaling pathway 0.1574
10 Epithelial cell signaling in Heli-

cobacter pylori infection
0.1431 Type I diabetes mellitus 0.4361 Progesterone-mediated oocyte mat-

uration
0.1599

11 Acute myeloid leukemia 0.1444 Graft-versus-host disease 0.5185 Leishmaniasis 0.1670
12 Renal cell carcinoma 0.1469 Rheumatoid arthritis 0.5318 Allograft rejection 0.1792
13 Malaria 0.1603 Choline metabolism in cancer 0.5979 Acute myeloid leukemia 0.1827
14 Chronic myeloid leukemia 0.1696 Autoimmune thyroid disease 0.6075 Epithelial cell signaling in Heli-

cobacter pylori infection
0.1866

15 Type I diabetes mellitus 0.1769 Inflammatory bowel disease (IBD) 0.6255 Epstein-Barr virus infection 0.1899
16 Bladder cancer 0.1999 Systemic lupus erythematosus 0.6425 Renal cell carcinoma 0.1967
17 Inflammatory bowel disease (IBD) 0.2056 Legionellosis 0.6595 Malaria 0.2111
18 Allograft rejection 0.2070 NOD-like receptor signaling path-

way
0.6716 RNA transport 0.2164

19 Bacterial invasion of epithelial cells 0.2433 Malaria 0.6820 Chronic myeloid leukemia 0.2168
20 Platelet activation 0.2476 Bladder cancer 0.8927 Antigen processing and presenta-

tion
0.2193

GSA+Fisher GSA+addCLT GSEA+Fisher

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Type I diabetes mellitus 0 Type I diabetes mellitus 0.0002 Allograft rejection 0
2 Viral carcinogenesis 0 Viral carcinogenesis 0.0003 Natural killer cell mediated cyto-

toxicity
0

3 Hepatitis B 0 Autoimmune thyroid disease 0.0009 Sulfur relay system 0
4 Viral myocarditis 0 Intestinal immune network for IgA

production
0.0010 Non-small cell lung cancer 0

5 Rheumatoid arthritis 0 Cell adhesion molecules (CAMs) 0.0010 Cholinergic synapse 0
6 RIG-I-like receptor signaling path-

way
0 Allograft rejection 0.0016 Asthma 0

7 Antigen processing and presenta-
tion

0 Inflammatory bowel disease (IBD) 0.0016 Inflammatory bowel disease (IBD) 0

8 Herpes simplex infection 0 Hepatitis B 0.0025 Circadian rhythm 0
9 Systemic lupus erythematosus 0 Graft-versus-host disease 0.0025 Estrogen signaling pathway 0
10 Asthma 0 Viral myocarditis 0.0033 Ribosome biogenesis in eukaryotes 0
11 Measles 0 Rheumatoid arthritis 0.0036 Wnt signaling pathway 0
12 Cytosolic DNA-sensing pathway 0 Toxoplasmosis 0.0046 Vibrio cholerae infection 0
13 Influenza A 0 Legionellosis 0.0046 Fanconi anemia pathway 0
14 Pertussis 0 RIG-I-like receptor signaling path-

way
0.0046 T cell receptor signaling pathway 0

15 Hepatitis C 0 Antigen processing and presenta-
tion

0.0061 Signaling pathways regulating
pluripotency of stem cells

0

16 Alcoholism 0 Herpes simplex infection 0.0061 Prolactin signaling pathway 0
17 Toll-like receptor signaling pathway 0 NF-kappa B signaling pathway 0.0107 Non-alcoholic fatty liver disease

(NAFLD)
0

18 Transcriptional misregulation in
cancer

0 Systemic lupus erythematosus 0.0113 Prostate cancer 0

19 SNARE interactions in vesicular
transport

0 Asthma 0.0120 Hippo signaling pathway 0

20 PPAR signaling pathway 0 Measles 0.0128 Cell adhesion molecules (CAMs) 0

GSEA+addCLT IA+Fisher IA+addCLT

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Allograft rejection 5e-07 Influenza A 3e-31 Measles 2e-09
2 Natural killer cell mediated cyto-

toxicity
3e-05 Systemic lupus erythematosus 2e-30 Influenza A 2e-08

3 Sulfur relay system 0.0004 Herpes simplex infection 4e-28 NF-kappa B signaling pathway 4e-08
4 Non-small cell lung cancer 0.0004 Measles 9e-24 Viral carcinogenesis 6e-08
5 Osteoclast differentiation 0.0004 Staphylococcus aureus infection 6e-22 HTLV-I infection 6e-08
6 Cholinergic synapse 0.0004 Antigen processing and presenta-

tion
4e-19 Hepatitis B 1e-07

7 Asthma 0.0004 Asthma 2e-18 Antigen processing and presenta-
tion

2e-07

8 Inflammatory bowel disease (IBD) 0.0005 Viral carcinogenesis 5e-16 Epstein-Barr virus infection 4e-07
9 Circadian rhythm 0.0008 Leishmaniasis 3e-15 Intestinal immune network for IgA

production
2e-06

10 Amphetamine addiction 0.0009 Epstein-Barr virus infection 3e-15 Staphylococcus aureus infection 3e-06
11 Estrogen signaling pathway 0.0009 Inflammatory bowel disease (IBD) 6e-15 Tuberculosis 4e-06
12 Ribosome biogenesis in eukaryotes 0.0009 Cell cycle 2e-14 Rheumatoid arthritis 4e-06
13 Pathways in cancer 0.0009 Toxoplasmosis 2e-14 Phagosome 1e-05
14 Wnt signaling pathway 0.0009 Phagosome 2e-14 Systemic lupus erythematosus 2e-05
15 Vibrio cholerae infection 0.0009 Transcriptional misregulation in

cancer
2e-14 Toxoplasmosis 2e-05

16 Fanconi anemia pathway 0.0009 Cytosolic DNA-sensing pathway 1e-13 Allograft rejection 2e-05
17 T cell receptor signaling pathway 0.0009 Legionellosis 1e-13 Protein processing in endoplasmic

reticulum
0.0001

18 Signaling pathways regulating
pluripotency of stem cells

0.0012 Tuberculosis 8e-13 Viral myocarditis 0.0001

19 Prolactin signaling pathway 0.0014 RIG-I-like receptor signaling path-
way

2e-12 Cell cycle 0.0003

20 Dilated cardiomyopathy 0.0016 Graft-versus-host disease 3e-12 Legionellosis 0.0003
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Table S4: The 20 top ranked pathways and FDR-corrected p-values obtained by combining AML data using 9 different
approaches: 3 MetaPath methods and 6 GSA-, GSEA-, and IA-related approaches. The horizontal line shows the 5% cutoff.
The target pathway Acute myeloid leukemia is highlighted in green. Among the 9 methods, only IA+Fisher and IA+addCLT
identify the target pathway as significant and rank it at the same position 25th.

MetaPath P MetaPath G MetaPath I

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Neuroactive ligand-receptor inter-
action

0.9960 Huntington’s disease 0.9678 Neuroactive ligand-receptor inter-
action

1.0000

2 Ribosome biogenesis in eukaryotes 1.0000 AMPK signaling pathway 0.9782 Ribosome biogenesis in eukaryotes 1.0000
3 RNA transport 1.0000 TNF signaling pathway 0.9854 RNA transport 1.0000
4 mRNA surveillance pathway 1.0000 Non-alcoholic fatty liver disease

(NAFLD)
0.9964 mRNA surveillance pathway 1.0000

5 RNA degradation 1.0000 Prion diseases 0.9978 RNA degradation 1.0000
6 PPAR signaling pathway 1.0000 Ribosome biogenesis in eukaryotes 1.0000 PPAR signaling pathway 1.0000
7 Fanconi anemia pathway 1.0000 RNA transport 1.0000 Fanconi anemia pathway 1.0000
8 MAPK signaling pathway 1.0000 mRNA surveillance pathway 1.0000 MAPK signaling pathway 1.0000
9 ErbB signaling pathway 1.0000 RNA degradation 1.0000 ErbB signaling pathway 1.0000
10 Ras signaling pathway 1.0000 PPAR signaling pathway 1.0000 Ras signaling pathway 1.0000
11 Rap1 signaling pathway 1.0000 Fanconi anemia pathway 1.0000 Rap1 signaling pathway 1.0000
12 Calcium signaling pathway 1.0000 MAPK signaling pathway 1.0000 Calcium signaling pathway 1.0000
13 cGMP-PKG signaling pathway 1.0000 ErbB signaling pathway 1.0000 cGMP-PKG signaling pathway 1.0000
14 cAMP signaling pathway 1.0000 Ras signaling pathway 1.0000 cAMP signaling pathway 1.0000
15 Cytokine-cytokine receptor interac-

tion
1.0000 Rap1 signaling pathway 1.0000 Cytokine-cytokine receptor interac-

tion
1.0000

16 Chemokine signaling pathway 1.0000 Calcium signaling pathway 1.0000 Chemokine signaling pathway 1.0000
17 NF-kappa B signaling pathway 1.0000 cGMP-PKG signaling pathway 1.0000 NF-kappa B signaling pathway 1.0000
18 HIF-1 signaling pathway 1.0000 cAMP signaling pathway 1.0000 HIF-1 signaling pathway 1.0000
19 FoxO signaling pathway 1.0000 Cytokine-cytokine receptor interac-

tion
1.0000 FoxO signaling pathway 1.0000

20 Sphingolipid signaling pathway 1.0000 Chemokine signaling pathway 1.0000 Sphingolipid signaling pathway 1.0000

GSA+Fisher GSA+addCLT GSEA+Fisher

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 Epithelial cell signaling in Heli-
cobacter pylori infection

0 Acute myeloid leukemia 0.3120 Legionellosis 0

2 Salmonella infection 0 NF-kappa B signaling pathway 0.3120 Natural killer cell mediated cyto-
toxicity

0

3 Fanconi anemia pathway 0 Estrogen signaling pathway 0.3120 Ras signaling pathway 0
4 Transcriptional misregulation in

cancer
0.0917 Fc gamma R-mediated phagocyto-

sis
0.3120 Taste transduction 0

5 Leukocyte transendothelial migra-
tion

0.1063 Transcriptional misregulation in
cancer

0.3120 Huntington’s disease 0

6 Fc gamma R-mediated phagocyto-
sis

0.3780 Epithelial cell signaling in Heli-
cobacter pylori infection

0.3182 Epithelial cell signaling in Heli-
cobacter pylori infection

0.0076

7 Acute myeloid leukemia 0.3780 VEGF signaling pathway 0.4481 Endocytosis 0.0079
8 Apoptosis 0.3780 TNF signaling pathway 0.5166 Rap1 signaling pathway 0.0089
9 Chagas disease (American try-

panosomiasis)
0.3780 T cell receptor signaling pathway 0.5166 Focal adhesion 0.0204

10 Oxytocin signaling pathway 0.3780 Carbohydrate digestion and ab-
sorption

0.5166 Chagas disease (American try-
panosomiasis)

0.0454

11 Osteoclast differentiation 0.3780 Bacterial invasion of epithelial cells 0.5166 NOD-like receptor signaling path-
way

0.0502

12 VEGF signaling pathway 0.3780 Endocytosis 0.5166 Epstein-Barr virus infection 0.0660
13 NF-kappa B signaling pathway 0.3780 Non-small cell lung cancer 0.5166 FoxO signaling pathway 0.0660
14 TNF signaling pathway 0.3780 Osteoclast differentiation 0.5271 Pathways in cancer 0.0718
15 Cell cycle 0.3795 AMPK signaling pathway 0.6181 Fc epsilon RI signaling pathway 0.0743
16 Endocytosis 0.3854 Natural killer cell mediated cyto-

toxicity
0.6181 Synaptic vesicle cycle 0.0847

17 Chemokine signaling pathway 0.5309 MAPK signaling pathway 0.6181 Aldosterone-regulated sodium reab-
sorption

0.0847

18 Estrogen signaling pathway 0.5309 Oxytocin signaling pathway 0.6181 Aldosterone synthesis and secretion 0.0885
19 p53 signaling pathway 0.5309 Aldosterone-regulated sodium reab-

sorption
0.6181 mTOR signaling pathway 0.0920

20 T cell receptor signaling pathway 0.5309 Leukocyte transendothelial migra-
tion

0.6181 Influenza A 0.1107

GSEA+addCLT IA+Fisher IA+addCLT

Pathway p.fdr Pathway p.fdr Pathway p.fdr

1 mTOR signaling pathway 0.0351 Transcriptional misregulation in
cancer

7e-22 Transcriptional misregulation in
cancer

6e-18

2 Aldosterone-regulated sodium reab-
sorption

0.0434 Phagosome 1e-13 TNF signaling pathway 0.0004

3 Fc epsilon RI signaling pathway 0.0719 Osteoclast differentiation 2e-11 Chemokine signaling pathway 0.0007
4 Choline metabolism in cancer 0.1125 Leishmaniasis 7e-10 Leishmaniasis 0.0007
5 Focal adhesion 0.1125 Chemokine signaling pathway 1e-09 Leukocyte transendothelial migra-

tion
0.0013

6 Pathways in cancer 0.1125 Natural killer cell mediated cyto-
toxicity

1e-09 Salmonella infection 0.0016

7 PPAR signaling pathway 0.1125 Leukocyte transendothelial migra-
tion

4e-08 Endocytosis 0.0020

8 cAMP signaling pathway 0.1125 Tuberculosis 2e-07 Pertussis 0.0022
9 Endocytosis 0.1126 Cell cycle 2e-07 Legionellosis 0.0022
10 Epithelial cell signaling in Heli-

cobacter pylori infection
0.1126 Rheumatoid arthritis 2e-07 Viral carcinogenesis 0.0022

11 Rap1 signaling pathway 0.1126 Salmonella infection 6e-07 Amoebiasis 0.0024
12 Type I diabetes mellitus 0.1126 Legionellosis 1e-06 Staphylococcus aureus infection 0.0024
13 Inflammatory bowel disease (IBD) 0.1126 Viral carcinogenesis 3e-06 Pathways in cancer 0.0024
14 Alzheimer’s disease 0.1126 Amoebiasis 5e-06 Neuroactive ligand-receptor inter-

action
0.0034

15 B cell receptor signaling pathway 0.1126 Pertussis 6e-06 Influenza A 0.0035
16 Thyroid hormone signaling path-

way
0.1126 Staphylococcus aureus infection 8e-06 Fc gamma R-mediated phagocyto-

sis
0.0040

17 Tight junction 0.1126 Pathogenic Escherichia coli infec-
tion

9e-06 Pathogenic Escherichia coli infec-
tion

0.0041

18 Regulation of actin cytoskeleton 0.1126 Endocytosis 1e-05 Hepatitis B 0.0043
19 Synaptic vesicle cycle 0.1126 Fc gamma R-mediated phagocyto-

sis
2e-05 Osteoclast differentiation 0.0045

20 Pathogenic Escherichia coli infec-
tion

0.1126 Cytokine-cytokine receptor interac-
tion

2e-05 Epstein-Barr virus infection 0.0048
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2.3 Subtyping AML data

Using the pathway signatures of the meta-analysis methods, we perform subtyping on 167 AML samples downloaded
from the Broad Institute’s website http://gdac.broadinstitute.org/. The four methods, MetaPath I, MetaP-
ath G, MetaPath P and GSA+addCLT, yield no significant pathway and thus have no pathway signature. We use
the pathway signatures of the remaining six methods to subtype AML patients. We also subtype the AML patients
using all genes. The Cox p-values obtained for each analysis are shown in Table 4 in the main text. The Kaplan-
Meier survival analysis of the discovered subtypes for all genes and NBIA is shown in Figure 3 in the main text. The
Kaplan-Meier survival analysis for the remaining methods is shown in Figure S1.

The heatmaps in Figure S2 visualize different subtypes of AML patients derived from either on all genes and
NBIA signature. The left panels in Figure S2 show the the heatmaps of subtypes discovered using all genes while
the right panels show those using NBIA signature. In these panels, the columns represent the patients and different
colors on the top stripe shows different subtypes. To provide the genes that are most meaningful in defining the
subtypes, we also performed an analysis of variance (ANOVA) and selected genes that are most significant. The rows
in each panel shows the 30 top genes with the most significant p-values.

 http://gdac.broadinstitute.org/
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(A) Consensus clustering (B) Hierarchical clustering (C) Local shrinkage (D) Cluster ensemble
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Figure S1: Kaplan-Meier survival analysis of AML subtypes discovered by consensus clustering (A panels), hierarchical clustering
(B panels), local shrinkage (C panels), and cluster ensemble (D panels). From top to bottom are the results using the pathway
signatures obtained from IA+addCLT, IA+Fisher, GSEA+addCLT, GSEA+Fisher, and GSA+Fisher. In each panel, each
colored curve shows the survival probability of each discovered subtype.
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Figure S2: Heatmaps of the subtypes discovered by consensus clustering (CC), hierarchical clustering (HC), local shrinkage,
and clustering ensemble. The left panels show the heatmaps of subtypes discovered using genome-wide expression (all genes)
while the right panels shows those discovered by using NBIA signature. In each panel, columns represent AML samples while
rows represent top 30 genes with the most significant p-values (using ANOVA).



10

3 Discussions and simulation studies

3.1 On the impact of using both p-addCLT and p-effect size

The intuition of using both p-addCLT and p-effect-size is to combine the two types of p-values in order to reduce
potential false positives. We want to make sure that the identified differentially expressed genes are not only significant
from the classical hypothesis testing perspective, but also have estimated effect sizes (expression change) that are
outside the range of standard errors. By default, genes with both of the p-addCLT and p-effect-size smaller than
the threshold of FDR = 1% are considered as differentially expressed. We note that to have a p-value of 1%, the
absolute z-score must be at least 2 (z = µ

σ
where µ is the estimated effect size and σ is the standard error). Therefore,

with a cutoff of 1% we choose genes that are not only significant using the empirical Bayesian test, but also have the
absolute effect size at least twice the standard error. From another perspective, the rationale of using both p-addCLT
and p-effect-size is similar to the differential expression analysis using a volcano plot, which combines a measure of
statistical significance from a statistical test with the magnitude of the change. The difference here is that instead of
focusing on the magnitude, we focus on confirming that the magnitude of the change is well beyond the margin of
error. This also allows us to avoid introducing another threshold for effect sizes.

The contribution of each type of p-values depends on the data. For example, p-addCLT contributes more in
Alzheimer’s data while p-effect-size contributes more in Influenza and AML data. Figure S3 shows the scatter plots
of p-addCLT versus p-effect-size. A gene is considered DE if both p-addCLT and p-effect-size are significant, i.e.,
the gene belongs to the upper right quarter in the plot. In case of Alzheimer’s data (Figure S3A), if we removed
p-addCLT from the analysis, then we would have obtained a large number of DE genes (genes in upper and lower right
quarters), among which many are potentially false positives. Therefore, we would say that p-addCLT contributes
more to the analysis in Alzheimer’ data. In the case of AML (Figure S3B), most of DE genes are determined by
p-effect-size. Removing p-addCLT from this analysis will make a small difference since there are only 5 genes that
belong to the lower right panel. Therefore, we would say p-effect-size contributes more in Influenza and AML data
analysis (Figure S3B and C).
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Figure S3: Scatter plot of p-addCLT versus p-effect-size. The horizontal axes represent p-effect-size while the vertical axes
represent p-addCLT in the minus log scale. The red lines represent the cutoff of FDR = 1%.

3.2 On the contribution of the hypergeometric model and the perturbation
factor model

We expect that each model captures a different type of evidence for differential expression. Therefore, the contribution
of each model is expected to be complementary to one another. The hypergeometric model, also known as over-
representation analysis [6, 21], estimates the p-value as the probability of obtaining at least the observed number of
differentially expressed genes (DE) just by chance. Therefore, it captures the significance of the given pathway from
the perspective of the set of genes contained in it. In contrast, the perturbation factor (PF) model aims at capturing
the meaningful changes on a given gene topology. This captures the perturbation while taking into consideration
the position and role of every gene, and the direction and type of every signal on the pathway. For instance, the
insulin processing pathway has the insulin receptor (INSR) as the only entry point in this pathway. Indeed, if the
insulin receptor is somewhat disabled, the cell will not be able to process insulin in a normal way and this cell
function will be severely disrupted. However, the enrichment analysis will not yield a significant p-value if INSR is
the only differentially expressed gene on this pathway. In contrast, the impact analysis will be able to report this
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pathway as significantly impacted because it takes into consideration the topology of the pathway and propagates
the measured changed of the INSR throughout the rest of the pathway. Thus, the mathematical model employed by
the impact analysis will be able to recognize the fact that disabling the entry point in the pathway will shut off the
entire pathway [5]. The p-value of the PF model is the probability of obtaining a PF statistic at least as extreme as
the one observed under the null hypothesis. A recent very thorough review and benchmarking has shown that the
topology based pathway analysis methods are indeed better than the enrichment based methods [17].

We expect the hypergeometric model to play a crucial role in the following scenarios: (i) the gene topology is not
available or inaccurate, or (ii) the DE genes are disconnected. In fact, in the those cases, the hypergeometric model
is the only meaningful model among the two. However, while useful for the purpose of gene set analysis, this model
completely ignores the information about gene topology. In contrast, the PF model aims at fully exploiting all the
knowledge about how genes interact as described in the pathway.

Figure S4 illustrates an example analysis of a five-gene pathway. In this example, we monitor a total of 30
genes, among which five are found to be differentially expressed (DE). Two of the DE genes belong to the pathway.
Regardless of the position of the DE genes on the pathway, the hypergeometric test provides a p-value of pde = 0.183,
which is not significant. Now we present two cases in which the positions of the DE genes greatly influence the
perturbation factor and its p-value (ppert). In the first case, the DE genes are leaf nodes and cannot perturb the
activity of any other genes (the left graph in Figure S4). Gene A does not have any upstream gene nor differentially
expressed and therefore PF (A) = 0. Similarly, PF (B) = PF (D) = 0. For gene C and D, the perturbation factor
equals to effect size of the gene, i.e., PF (C) = PF (D) = 2. The total perturbation factor (PF) of the pathway
is 4. Comparing this total PF against the null distribution constructed for the pathway, we obtain ppert = 0.272.
Combining pde with ppert using Fisher’s method, we obtain a p-value of pcomb = 0.199, which is not significant.

In the second case, the DE genes have the ability to influence the activity of other genes (the right graph in
Figure S4). Again, we start the calculation from gene A. This gene does not have any upstream gene and therefore
its perturbation factor is equal to its effect size PF (A) = 2. For gene B, PF (B) = 2 + PF (A) = 4. For each of the
gene C, D, and E, the perturbation factor is one third of gene B. Therefore, PF (C) = PF (D) = PF (E) = 4

3
. The

total perturbation factor for the second case is 10. Comparing the total PF against the null, we have ppert = 0.025.
Combining pde with ppert using Fisher’s method, we have pcomb = 0.029. In summary, the positions of the DE genes
play an important role in the PF model. The two obtained p-values greatly differ even when we have the exact same
number of DE genes with the same effect size.
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𝒑𝒅𝒆 = 𝟎. 𝟏𝟖𝟑 & 𝒑𝒑𝒆𝒓𝒕 = 𝟎. 𝟐𝟕𝟐	à 𝒑𝒄𝒐𝒎𝒃 = 𝟎. 𝟏𝟗𝟗 𝒑𝒅𝒆 = 𝟎. 𝟏𝟖𝟑 & 𝒑𝒑𝒆𝒓𝒕 = 𝟎. 𝟎𝟐𝟓	à 𝒑𝒄𝒐𝒎𝒃 = 𝟎. 𝟎𝟐𝟗

Figure S4: Impact Analysis (IA) using perturbation factor model. The figure shows a five-gene pathway with two differentially
expressed (DE) genes in two different situations. In both cases, we have the same number of differentially expressed (DE) genes
(marked in green). An ORA would find the two situations equally not significant (pde = 0.183 for a set of 30 monitored genes,
out of which five are found to be DE). In the first situation (graph in the left), the two DE genes (C and D) are leaf nodes
and cannot perturb the activity of any other pathway. In the second situation (graph in the right), the two DE genes (A and
B) have the ability to influence the remaining genes in the pathway. This leads to a higher perturbation factor and a more
significant ppert.

3.3 On batch effects and data heterogeneity

In the NBIA framework, we estimate the effect sizes of in each dataset/study separately and then combine them
using a random-effects model. We use the standardized mean difference as the metric to measure effect size, which
standardizes the results of each study to a uniform scale before they can be combined. This metric is designed to
be robust against the scale of the original data [10, 4, 3]. In addition, the random-effects model includes batch
effects and data heterogeneity in the design: yi = µ + τi + εi. In this formula, µ is the central tendency and τi is
the term by which the effect size in the ith study different from the central tendency. The τi variables represent
batch effects and data heterogeneity among datasets [13, 23]. In other words, this model includes batch effects as a
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Figure S5: Expression values of 197 control samples obtained from eight AML datasets. The horizontal axis shows the control
samples while the vertical axis shows the expression values. Each box represents the range between 25th and 75th percentile
of the expression values in each sample. The eight colors represent eight different datasets that the samples originated from.
Samples from different datasets have distinctively different expression distributions.

covariate in the designated formula thus explicitly removing the batch effects. That was the main reason we favored
the random-effects model over the fixed-effects model when designing NBIA.

To demonstrate that the method is robust against batch effects and data heterogeneity, we simulated a scenario
in which data samples were obtained from different data distributions that represent different batches. We first
put together 197 control samples obtained from the eight AML datasets analyzed in our manuscript. The data
distributions of the 197 samples are shown in Figure S5. As shown in the figure, samples from different datasets
have distinctively different expression distributions. These differences represent batch effects and data heterogeneity,
including differences between population subgroups (e.g., different ethnicities, gender, race, or living conditions).
Next, we randomly selected 20 samples from the sample pool and split them into two equal groups: disease and
control. We repeated this process ten times to generate ten datasets. Since samples of both “disease” and “control”
groups are randomly drawn from the same pool, a good statistical method should see no difference between these
random groups.

In the next step, we altered the gene expression of nine specific genes in the FoxO signaling pathway for the
samples assigned to the “disease” group. Figure S6 shows the FoxO signaling pathway that we focused on. The
reason for choosing this KEGG pathway in this simulation is that it consists of a number of genes that do not
appear in any other KEGG pathways, thus avoiding cross-talk effects between pathways [5]. The entries marked
in red consist of genes that only appear on this pathway: (1) SET9 (gene symbol SETD7 with Entrez ID 80854),
(2) FOXO (FOXO6/100132074), (3) Plk (PLK2/10769 and PLK4/10733), (4) KLF2 (KLF2/10365), (5) RAG-1/2
(RAG1/5896 and RAG2/5897), and (6) atrogin-1 (FBXO25/26260 and FBXO32/114907). The actual interactions
between these genes are shown in Figure S7, in which SETD7 represses FOX06, and FOX06 activates seven remaining
genes. We used the package simPATHy [18] to fit the expression of the ten simulated datasets to the subnetwork
shown in Figure S7 and to simulate differential expression for disease samples. In each dataset, the gene SETD7 is
down-regulated, leading to the up-regulation of the remaining genes in the subnetwork. The software did not alter
expression values of any other genes.

Now we use NBIA to perform a meta-analysis of the ten datasets including the tweaked genes on the FoxO
signaling pathway. For each gene in each dataset, NBIA calculates: i) a p-value using limma, and ii) an effect size.
Next, it combines the p-values across the ten datasets using addCLT to obtain a p-addCLT for each gene. The
method also combines the effect sizes to obtain an overall effect size and a p-effect-size for each gene. Figure S8A
shows the volcano plot of p-addCLT versus effect size. The horizontal axis represents effect size while the vertical
axis represents minus log of FDR-corrected p-addCLT. The figure shows that the gene SETD7 is down-regulated
with an approximate effect-size of −1.5 while the other eight genes of the subnetwork are up-regulated with effect
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Figure S6: FoxO signaling pathway. The entries marked in red consist of genes that do not appear in any other KEGG pathways.

FOXO6

PLK4 PLK2 KLF2 RAG1 RAG2

SETD7

FBXO32 FBXO25

Figure S7: The connected module of FoxO signaling pathway that do not appear in any other KEGG pathways.
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Figure S8: Effect size and p-values obtained for each gene. Panel (A) shows the volcano plot of p-addCLT versus effect size
while panel (B) shows the scatter plot of p-addCLT versus p-effect-size. The p-values presented here have been corrected for
multiple comparisons using False Discovery Rate (FDR).
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Table S5: The 5 top ranked pathways and FDR-corrected p-values obtained from the ten simulated datasets using ten meta-
analysis approaches: NBIA, three MetaPath methods, and six GSA-, GSEA-, and IA-related approaches. The horizontal
line shows the cutoff of FDR = 5%. The target pathway FoxO signaling pathway is highlighted in green. Only NBIA and
GSA+Fisher identify the target pathway as significant and rank it on top.

NBIA MetaPath P

Pathway p.fdr Pathway p.fdr

1 FoxO signaling pathway 1e-11 Neuroactive ligand-receptor interaction 0.9997
2 Ribosome biogenesis in eukaryotes 1.0000 Ribosome biogenesis in eukaryotes 1.0000
3 RNA transport 1.0000 RNA transport 1.0000
4 mRNA surveillance pathway 1.0000 mRNA surveillance pathway 1.0000
5 RNA degradation 1.0000 RNA degradation 1.0000

MetaPath G MetaPath I

Pathway p.fdr Pathway p.fdr

1 Ovarian steroidogenesis 0.0630 Ovarian steroidogenesis 0.1250
2 Regulation of autophagy 0.1811 Regulation of autophagy 0.3229
3 Regulation of lipolysis in adipocytes 0.1840 Type I diabetes mellitus 0.3454
4 Glutamatergic synapse 0.1960 Staphylococcus aureus infection 0.3470
5 Staphylococcus aureus infection 0.1963 Carbohydrate digestion and absorption 0.3476

GSA+Fisher GSA+addCLT

Pathway p.fdr Pathway p.fdr

1 FoxO signaling pathway 0 FoxO signaling pathway 0.0668
2 Regulation of actin cytoskeleton 0 p53 signaling pathway 0.3170
3 Fc gamma R-mediated phagocytosis 0 Rap1 signaling pathway 0.3170
4 Tight junction 0 Small cell lung cancer 0.3310
5 Small cell lung cancer 0.2724 Type II diabetes mellitus 0.3839

GSEA+Fisher GSEA+addCLT

Pathway p.fdr Pathway p.fdr

1 Cocaine addiction 0 Cocaine addiction 0.5811
2 Glutamatergic synapse 0 Protein processing in endoplasmic reticulum 0.9637
3 Maturity onset diabetes of the young 0 SNARE interactions in vesicular transport 0.9637
4 Adipocytokine signaling pathway 0 Non-alcoholic fatty liver disease (NAFLD) 0.9637
5 Protein processing in endoplasmic reticulum 0.5784 Oocyte meiosis 0.9637

IA+Fisher IA+addCLT

Pathway p.fdr Pathway p.fdr

1 FoxO signaling pathway 1.0000 FoxO signaling pathway 1.0000
2 Ribosome biogenesis in eukaryotes 1.0000 Ribosome biogenesis in eukaryotes 1.0000
3 RNA transport 1.0000 RNA transport 1.0000
4 mRNA surveillance pathway 1.0000 mRNA surveillance pathway 1.0000
5 RNA degradation 1.0000 RNA degradation 1.0000

size of 1 or higher. Figure S8B shows the scatter plot of p-addCLT versus p-effect-size. The genes in the subnetwork
have p-values of 10−5 or smaller. The p-values of all other genes equal to 1 after FDR correction (both p-addCLT
and p-effect-size). Using a default cutoff of FDR = 1% on both p-addCLT and p-effect-size, NBIA identified exactly
the genes in the impacted subnetwork as significant.

Table S5 shows the 5 top ranked pathways and FDR-corrected p-values at the pathway level analysis. NBIA
correctly identifies FoxO signaling pathway as the only significantly pathway. We also analyzed the data using the
other nine meta-analysis approaches: three MetaPath methods and six GSA-, GSEA-, and IA-related approaches.
The three MetaPath methods identify no pathway as significant. GSA+Fisher is able to identify the target pathway
as significant and ranks it on top. However, this method also identifies three other pathways as significant, which are
clearly false positives. The reason is that the p-value for these pathways is zero in one of the datasets and Fisher’s
method always provides a combined p-value of zero when an individual p-value is zero. GSA+addCLT produces no
false positives and also ranks the target pathway on top. However, it is not powerful enough to identify the target
pathway as significant. The next method, GSEA+Fisher, produces four false positives. The remaining three methods
identify no pathway as significant.
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3.4 Assessing false positive rate via simulation

In order to assess the false positive rate of NBIA, we generated datasets under the null hypothesis and then calculated
the number of pathways that are identified as significant using NBIA. Similar to the simulation described above, we
created a pool of 197 control samples obtained from the eight AML datasets. To simulate a dataset under the null
hypothesis, we randomly selected 20 samples from the pool and split them into two equal groups: disease and control.
In the first scenario, we set the number of datasets (m) to 5. In this scenario, we generated five datasets and then
analyzed the data using NBIA. Pathways with p-values smaller than the significance threshold (FDR = 5%) are
considered false positives. The number of significant pathways divided by the total number of pathways is considered
false positive rate (FPR). We repeated this process ten times and calculate the average FPR for m = 5. In the next
scenarios, we increased m and repeated the process described above to compute the average FPR for different values
of m.

The average false positive rates for varying values of m are shown in Figure S9A. Overall, NBIA has 0% FPR. As
described in the Methods Section, the gene-level analysis produces two lists of p-values – p-addCLT and p-effect-size.
These p-values are adjusted using False Discovery Rate (FDR). A gene is considered DE is both of its adjusted
p-values are smaller than the threshold of FDR = 1%. These significant genes then serve as input of the Impact
Analysis method. Again, the p-values obtained from the pathway-level analysis are adjusted using FDR. Pathways
with p-values smaller than the threshold of FDR = 5% are considered as significant. The 0% false positive rate
are mainly due to the rigorous procedure of selecting differentially expressed (DE) genes and the two levels of FDR
correction.

To demonstrate the impact of FDR correction steps, we repeated the analysis with the following modifications to
NBIA: (i) we removed the FDR adjustment at both gene and pathway levels, and (ii) we set the significance threshold
to 5% for both gene- and pathway-level analysis. In this scenario, the FPR is close to the significance threshold of
5% regardless of the number of datasets to be combined (Figure S9B).
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Figure S9: False positive rates of NBIA with varying number of datasets to be combined. (A) False positive rate of NBIA using
default settings. (B) False positive rate of NBIA without using False Discovery Rate (FDR) at both gene and pathway levels.



16

References

[1] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach to
multiple testing. Journal of The Royal Statistical Society B, 57(1):289–300, 1995.

[2] B. M. Bolstad. Low-level analysis of high-density oligonucleotide array data: background, normalization and
summarization. PhD thesis, University of California, 2004.

[3] M. Borenstein, L. V. Hedges, J. P. Higgins, and H. R. Rothstein. Introduction to Meta-Analysis. John Wiley &
Sons, New York, 2009.

[4] J. Cohen. Statistical power analysis for the behavioral sciences. Academic Press, New York, 2nd edition, 2013.

[5] M. Donato, Z. Xu, A. Tomoiaga, J. G. Granneman, R. G. MacKenzie, R. Bao, N. G. Than, P. H. Westfall,
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