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1 CancerMA

CancerMA [I] is a web-based tool that provides a framework for meta-analysis of multiple cancer gene expression
datasets, particularly microarray. By the time of writing this manuscript, CancerMA is not accessible.

In principle, CancerMA retrieves and processes (quality control, background correction, normalization) microarray
data from ArrayExpress [2] and GEO [3] databases. Accordingly, this website has established its own microarray
database, which contains 80 individual curated cancer expression matrices originating from 45 experiments and
covers 13 different cancer types. For each matrix, the rows represent the gene/probe IDs; while the columns are
samples labeling control or disease. Another local database is built for automatically mapping probe to gene, which
contains gene and probe annotations curated from the Ensembl [4] database, HUGO Gene Nomenclature Committee
(HGNC) [5] database, and the Affymetrix database. The website also gets pathway information from Gene Ontology
(GO) [6] for pathway analysis.

The users need to upload a user-supplied gene list to start an analysis. This list is then used to filter the features
from 80 individual matrices. Differential Expression analysis using limma [7] R package is performed in each filtered
data matrix. For each gene, lists of p-value and log2 fold change (log2FC), one per data matrix, are returned. These
p-values are also corrected using FDR.

For single array analysis, genes adjusted p-value < 0.05 and log2FC > 1 are selected as DE genes. For the
meta-analysis, the results from 80 individual analyses are combined for each cancer type as well as for all cancer types.
Stouffer’s [8] method and weighted linear combination are applied to calculate meta-p-values and meta-log2FC,
respectively. If multiple probes are mapping the same gene identifier, the probe with the most extreme log2FC value
with its corresponding p-value is selected. The following thresholds select DE genes: absolute meta-log2FC > 1 or a
confidence interval above zero, and a meta-p-value < 0.05.

After applying the meta-analysis at the gene level, CancerMA obtains a list of DE genes. CancerMA then uses
ORA to calculate the p-value for each GO term. The output of CancerMA includes the list of GO terms and their
p-values for both meta-analysis and the analysis of each dataset. CancerMA also visualizes the analysis results using
Circos, forest, and Krona plots.

2 INMEX

INMEX (INtegrative Meta-analysis of EXpression data) [9] is a web-based platform that performs meta-analysis
of multiple gene expression datasets. It also supports the integration of transcriptomics and metabolomics data.
Each input file is formatted as a data table, in which rows represent genes/probes and columns represent samples.
After uploading the data, the website allows users to visualize the data using box plot and principal component
analysis (PCA) to detect outliers or to investigate whether the data need to be further normalized. INMEX supports
four types of gene IDs: Entrez, RefSeq, GenBank, and Ensembl. In addition, 45 probeset IDs corresponding to 45
microarray platforms for humans, mice, and rats, are supported in this tool. Note that all metabolite IDs will be
mapped to KEGG compound IDs.

In the first step of analysis workflow, INMEX uses the moderated t-test in the limma package to perform
differential analysis and to identify the differentially expressed genes within each input dataset. Next, users can
choose one of the three following modules to continue their analysis. First, the ‘Pattern extractor’ module visualizes a
set of user selected expression profiles as heatmaps. Second, in the ‘enrichment network’ module, pathway enrichment
analysis is performed by applying ORA or GSEA on each subset of input data matrices. Results are shown as a
table of pathways with their p-values and an interactive network of pathways. On the generated network, users can
interactively explore each node to see differentially expressed genes and their statistics.

Third, the ‘GO analysis’ module, using hypergeometric test, enables users to identify the enriched GO terms. The
input for this module is a list containing genes and their corresponding statistics, which are combined from individual
differential analyses. Briefly, using the results from the limma t-test, INMEX implements five different strategies
to combine the results, including combining p-values (Fisher’s and Stouffer’s methods), combining standardized
differences (effect sizes), combining rank orders, combining votes, and direct data merging. Combining rank orders
is based on computing the fold-change for each gene within each dataset. Then, the computed fold-changes for each
gene is multiplied to obtain a single rank for the gene. Combining vote strategy is based on identifying DE genes
within each dataset. Next, the number of datasets in which a gene is detected as DE would be considered as a
gene’s vote. The direct data merging approach combines all datasets into one single dataset and uses this dataset



for further analysis. Combining p-values and combining standardized differences approaches are vulnerable against
outliers. On the other side, combining rank orders is more robust in facing with outliers and larger variations in
different studies. The vote-counting method is essentially platform-independent, as only the final DE gene lists are
used, and as the last one, direct data merge should only be used when gene sets are similar. The results from the
meta-analysis are presented in detailed tables containing statistics from individual differential analyses, as well as
statistics using the selected combiners.

3 Active Pathways

Active Pathways [10] is an R package on CRAN that allows users to integrate multiple omics datasets for pathway
analysis. The input includes two files. The first file is a matrix of p-values in which rows represent genes and columns
represent different datasets or data types. The second file is the pathway annotation in the format of GMT file.

For each gene (row), the method combines the p-values across the datasets/data types (columns) using Brown’s
method (combining dependent p-values), which is an extension of Fisher’s method (combining independent p-values).
After this step, we receive a list of combined p-values — one per gene. Next, the method remove genes with high
combined p-values (a default threshold of 0.1 is used). The remaining genes are considered DE genes. Next, a
ranked hypergeometric test (ranked ORA) is performed to compute the p-values of the pathways. The method also
adjust the p-values using the Bonferroni method. Pathways with adjusted p-values smaller than 5% are considered
significant.

Independently, for each dataset/data type, the method also applies the same threshold of 0.1 to determine the
DE genes and then perform pathway analysis using ranked ORA to calculate the p-values of the pathways. The
same adjustment method (Bonferroni) and threshold are applied to identify the pathways that are significant in each
dataset/data type. The output of the method is a list of pathways that are significant in at least one of the analyses.
The method reports a table that indicate which pathway is significant in which analysis (all individual analyses
and the integrative analysis). This table serves as the input of another module, named Enrichment Map [I1] from
Cytoscape software package [12], for the visualization of pathway analysis and data integration.

4 MarVis-Pathway

MarVis-Pathway [13] is a standalone software implemented in MATLAB. The tool is designed with an emphasis on
integration analysis of non-targeted metabolomics data and other omics data, including DNA microarray-based
transcriptomics. The input is multiple .csv files in which rows are genes and columns are samples.

After importing the metabolomics and transcriptomics datasets in MarVis-Filter, each dataset’s features are
filtered. The filtration process starts with performing a signal-to-noise ratio test. Then the sample labels are permuted
1000 times (assignments of samples to conditions), and finally, the features with a false discovery rate (FDR Benjamini
and Hochberg [14]) threshold of 0.05 is filtered. Each filtered gene set is stored in the MarVis-Filter clipboard.
Finally, all filtered metabolomics and transcriptomics sets are combined by concatenating the corresponding data
tables. The features of the combined set are mapped to metabolite and gene entries in the corresponding pathways
from KEGG and BioCyec [I5] database collection. The mapped features from the metabolomics datasets to metabolite
entries are based on the corrected accurate masses. The transcriptomics features are mapped to gene entries using
the corresponding IDs. The combined dataset is utilized by MarVis-Cluster module for visualizing the clustering
based on 30 prototypes. The proportion of each type of data (including transcriptomics and metabolomics) is shown
beside each cluster.

The pathway analyzer in this tool can apply three types of enrichment analysis on each gene set, including
Entry-based, marker /feature-based, and sample-based analysis. The Entry-based is analogous to the ORA method,
in which the number of entries in a pathway matched by the selected features (in MarVis-Filter or MarVis-Cluster) in
comparison to the number of entries that could be matched over all pathways, is evaluated based on a hypergeometric
distribution. In the marker/feature-based analysis, the calculated features’ ranks in the MarVis-Filter module are
considered for finding match entries in a particular pathway using a static or iterative hypergeometric test [16], a
rank-sum, or a Kolmogorov-Smirnov test [I7]. The third case, sample-based analysis, operates similarly to GSEA.
The ranks of features are utilized beside a rank-sum or Kolmogorov—Smirnov test statistic. After calculating the



corresponding p-values for each input set for a specific pathway, the p-values will be combined using Fisher’s [I8] or
Stouffer’s method.

5 BLMA

BLMA (Bi-level meta-analysis) [19] is an R package available on Bioconductor. It allows users to perform meta-
analysis of multiple mRNA datasets. The input is multiple matrices/datasets with grouping information (diseases vs.
controls). For each dataset, BLMA allows users to perform pathway analysis using one of the following methods:
over-representation analysis (ORA), Gene Set Analysis (GSA) [20], Pathway Analysis with Down-weighting of
Overlapping Genes (PADOG) [21], Impact Analysis (IA) [22]. After analyzing each dataset, each pathway has
multiple p-values — one per dataset. For each pathway, users can combine the p-values using one of the following
methods: addCLT (additive method), Fisher’s, Stouffer’s, minP, and maxP methods. The output is a list of pathways
with the p-values obtained from each dataset or from the integration. The tool also adjusts the p-values using FDR.
Note that addCLT is a method developed based on the Central Limit Theorem and the additive method. When the
number of datasets are smaller than 20, the additive method is performed for calculating the combined P-values. It
is proven that by increasing the number of studies, the additive method does not work properly. Therefore, the
Central Limit Theorem (CLT) is suggested in the case that the number of studies is greater than 20.

6 DANUBE

DANUBE (Data-driven meta-ANalysis using UnBiased Empirical distributions) [23] does not provide an R package.
This method is a meta-analysis approach that is able to correct for method bias and integration of multiple mRNA
datasets. The method is based on the fact that pathway analysis often provide results that are biased toward
well-studied conditions (cancer, Alzheimer’s disease, etc.). The authors start by providing proof that the p-values
obtained under the null hypothesis are not uniformly distributed. To do this, they downloaded a large number
of control samples and then construct the datasets under the null by randomly label the samples as controls and
diseases. They proved that the p-values are not uniformly distributed, and that the bias is due to the methods
rather than the data.

The input of the method is multiple mRNA datasets with sample groupings. DANUBE uses one of the four
methods, GSEA, GSA, TA, and PADOG, to perform pathway analysis in each dataset. It then uses the empirical
distributions to correct the p-values obtained for each pathways. After bias correction, each pathway has multiple
p-values — one per datasets. For each pathway, the method combines the p-values using the addCLT method, which
is a combination of the additive and the Central Limit Theorem. The method also adjusts the p-values using FDR.
The output if a list of pathways and their p-values (from individual dataset and from the aggregated analysis).

7 Mergeomics

Mergeomics [24] is available as a Bioconductor package and a web-based application. The method consists of two
major modules. The first module, Marker Set Enrichment Analysis (MSEA), focuses on identifying significantly
enriched pathways, whereas the second module, weighted Key Driver Analysis (wWKDA), identifies genes that are
the potential key drivers of the enriched pathways. Although these modules are introduced as sequential steps in
Mergeomics, they can be performed independently as per user’s interest.

The input of MSEA includes: (1) a matrix with two columns, marker IDs (e.g., genes) and associated minus log
p-values or log fold change, (2) a matrix measuring the correlation between the marker IDs, (3) a list of functionally
defined gene sets (e.g., biological pathways or co-regulated genes), (4) mapping between marker IDs and genes. The
null hypothesis is that the differentially expressed (DE) genes are sampled from the same general population as
genes from the reference set. Therefore, if there are more DE genes in a pathway than what can be expected by
chance, then the pathway is likely to be enriched. To test this assumption, a chi-square-like statistic is calculated,
and a permutation test (by randomly shuffling the gene or marker labels) is performed to retrieve the p-value for
each pathway. The output from MSEA is a ranked list of pathways and their p-values. MSEA also allows users
to perform a meta-analysis of multiple datasets (meta-MSEA). meta-MSEA first calculates the p-values obtained



from multiple datasets for each pathway and then combines these p-values using Stouffer’s method. The combined
p-values are then adjusted using FDR.

The input of wKDA is the set of significantly enriched pathways obtained from MSEA. By default, pathways
with adjusted p-values less than 5% are selected as significantly enriched. If there is no significant pathway, the
top 10 pathways will be used for wKDA. Users also need to upload a file that defines the topological structure
of the pathways in the format of weighted graphs. The file has three columns: head node, tail node, and weight.
The wKDA then uses this information to project enriched pathways onto a network model of gene regulation, thus
returns the key driver gene as well as the number of all possible key drivers for each pathway. The enrichment
p-values and their FDR adjusted values for these key drivers are also printed out in the form of a table.

8 mirlntegrator

The mirlntegrator tool [25] is available as an R package on Bioconductor. This tool allows users to perform
the integration of miRNA and mRNA data for pathway analysis and disease subtyping. In order to perform
topology-aware analysis, the software augments KEGG and Reactome pathways with miRNA-mRNA interactions
available at miRTarBase [26] or TargetScan [27]. By default, the software provides a set of augmented pathways
from the biologically validated interactions at KEGG, Reactome, miRTarBase, and TargetScan.

The input of mirIntegrator is a list of DE genes and their fold changes. The tool calculates the p-values of the
pathways using ORA and Impact Analysis (TA). However, the generated augmented pathways by mirIntegrator can
be utilized by many existing pathway analysis methods. In the paper, authors mentioned ORA and Impact Analysis
(TA). TA is based on two types of evidence: i) the over-representation (ORA) of DE genes in a pathway, and ii)
the perturbation factor of such a pathway, as measured by propagating expression changes through the pathway
topology. The p-values for this evidence are calculated independently and then combined using Fisher’s method.
The output lists pathways sorted according to their nominal and adjusted p-values. This package also generates
graphical representations of the augmented pathways, which can provide a more comprehensive view.

9 multiGSEA

The method multiGSEA [28] has an R package on Bioconductor. This method allows users to perform data integration
and pathway analysis using pathways obtained from eight databases (implemented by graphite package [29]):
PharmGKB [30], NCI/Nature Pathway Interaction Database [31I], HumanCyc [32], SMPDB [33], Panther [34],
Biocarta [35], KEGG [36H38], and Reactome [39]. The input of multiGSEA includes three data types: transcriptomics,
proteomics, and metabolomics data. User-defined feature mappings map supported omics layers to the genes of the
pathways. Transcriptomics and proteomics features can be mapped to the following formats: Entrez IDs, Uniprot
IDs, Gene Symbols, RefSeq, or Ensembl IDs. Metabolomic features can be mapped to Comptox Dashboard specific
IDs (DTXSID, DTXCID), CAS numbers, Pubchem IDs (CID, SID), KEGG Compound IDs; HMDB IDs, or ChEBI
IDs. The mapping process is done by using AnnotationDbi [40] package internally.

Given a dataset with three types of omics (transcriptomics, proteomics, and metabolomics), multiGSEA maps
the features to genes and then analyzes each data type independently using GSEA. After the analysis, each pathway
has up to three p-values — one per data type. For each pathway, multiGSEA combines the three p-values using one of
the four methods: Z-method or Stouffer’s method or Fisher’s combined probability test or Edgington’s method [41].
The output of the the method includes four lists of p-values. Each pathway has three individual p-values (one per
data type) and one aggregated p-value. The method also adjusts the p-values using False Discovery Rate.

10 MAPE

MAPE (Meta-Analysis for Pathway Enrichment analysis) [42] has an R package on CRAN. The input of this method
includes multiple mRNA datasets and a set of gene lists (user-provided pathways). MAPE performs meta-analysis by
combining the p-values obtained from each dataset. The combination can be performed at the gene-level (MAPE-G)
or at the pathway level (MAPE-P). The two methods return two combined p-values — one at the gene-level and one
at the pathway-level. Finally, MAPE-I combines these two p-values using the MinP method [43].



Briefly, MAPE-G first computes the t-statistic for each gene in each study and then calculate the p-value using
permutation test. For each gene, MAPE-G then combines the individual p-values across multiple studies using the
MaxP algorithm [44] to obtain on single p-value for the gene. Finally, given the combined p-values and statistics
obtained from each gene, MAPE-G then performs a Kolmogorov-Smirnov (KS) test to calculate the p-value for each
pathway. The KS-test used in this article is similar to that used in GSEA [45].

In contrast to MAPE-G, MAPE-P combines the p-values at the pathway-level. In each study, MAPE-P first
computes the t-statistic for each gene and calculates the p-value for the gene using the permutation test. It then
calculates the p-values for the pathways using the KS-test. After the p-values are calculated for each pathway in
each study, MAPE-P then combines the p-values of a pathway across all studies using MaxP.

After the computation is done for both MAPE-G and MAPE-P, we obtain two p-values for each pathway.
MAPE-I combines the two p-values using the MinP method to obtain one single p-value per pathway. The method
outputs three lists of p-values — one for each of the three methods (MAPE-G, MAPE-P, and MAPE-I). The software
also adjusts the p-values using the False Discovery Rate (FDR).

11 iPEAP

iPEAP (integrative Pathway Enrichment Analysis Platform) [46] is a Java software designed for pathway analysis
using multi-omics data. At the time of writing this article, the software package is available for download from Google
Drive. Supported data types include transcriptomics, proteomics, metabolomics, and SNP data. For each data type,
the software utilizes one of the following methods to calculate the p-values of KEGG pathways: hypergeometric test
(i.e., ORA), GSEA [45], Globaltest [47], SNP-GSEA [48], and Gowinda [49]. After performing pathway enrichment
analysis on each data type separately using the selected algorithm, an aggregation algorithm is applied for integrating
pathways enrichment scores and creating a unified ranked table of enriched pathways. Two rank aggregation methods
are provided, RankAggreg [50] and RobustRankAggre [51]. Three measurements, Normalized discounted cumulative
gain (NDCG) [52], Expected reciprocal rank (ERR) [53], and Proportion (P) [54] are considered for evaluating
the ranking results. The NDCG considers the position of a relevant pathway in the aggregated ranked list. The
ERR takes the user satisfaction from ranking results into consideration to evaluate the aggregated ranks. The last
measurement, P computes the proportion of relevant pathways in the k first ranked pathways. Simple aggregation
methods such as min, median and mean are also implemented.

12 IMPaLA

IMPaLA (Integrated Molecular Pathway-Level Analysis) [55] is a web-based tool that allows users to integrate gene
expression with metabolomics data for pathway analysis. Genes and metabolites are linked through biochemical
reactions and contained in many pathways. Accordingly, IMPaLLA analyzes both types of data simultaneously. It
combines the analysis of gene/protein and metabolite data using a comprehensive basis of existing biochemical
pathways taken from 11 publicly available resources.

The website allows users to upload genes and/or metabolites in several identifiers namespaces. It will provide
users two options of pathway analysis methods with the available pathways. The two methods are over-representation
(ORA) or Wilcoxon enrichment analysis (WEA) [56]. Each of them also has different requirements for users to
upload their datasets.

For ORA, the input data should be lists of significantly differentially expressed genes/proteins/metabolites,
corresponding with the effect. These lists are resulted from differential expression analysis performed by the users.
Users should upload the background lists of identifiers representing all measured genes/proteins and/or metabolites
from the experiments. If no background lists are provided, all entities from existing pathways and annotated in the
user-specified identifier namespaces are used as default background lists.

For WEA, input data are lists of all measured genes/proteins and/or metabolites without any differential
expression analysis performed on them. Each entity contains one or a pair of numerical values. The values can be
fold changes or average expression values for two different experiment conditions (e.g. normal and disease).

The pathway enrichment analysis is then performed on each individual datasets. The adjusted p-values (Q-values)
are calculated using FDR. If there were no transcripts or no metabolites measured for a specific pathway, pathway’s



p-value for that data type will be set to be 1. The pathway enrichment p-values from individual analysis are then
combined by calculating their product value.

The output of IMPaLA is a table showing the pathways that contain at least one gene and/or metabolite from
the input lists. Additionally, information about pathway name, source, size and overlap with the input entities is
provided along with P-values calculated with appropriate statistical test for each pathway. Results can be sorted
on any column by clicking on the appropriate column header, and can be downloaded as a tab-delimited file. By
clicking on a pathway name, the user is guided to a summary web page at the original source database, which in
most cases also shows a detailed pathway diagram.

13 GeneTrail2

GeneTrail2 [57] is available as a web-service. This method performs integrative pathway analysis using the following
data types: transcriptomics, proteomics, miRNA, and genomics (SNP). The method allows users to analyze each
input omics dataset independently and compare the results obtained from all analyses the end. Supported pathway
databases include KEGG, Reactome, GO [58, [59], WikiPathways [60], BioCarta, NCI, PharmGKB, SMPDB and
SignaLink [61]. Supported identifier mappings include Entrez ID, Uniprot and Ensemble. The input is either: (1) a
list of differentially expressed (DE) genes, (2) a list of genes with computed scores (e.g., fold change or effect size),
or (3) an expression matrix (e.g., microarray data) with groupings (e.g., diseases versus controls).

When users provide an expression matrix, GeneTrail2 allows them to perform differentially expression analysis
at the gene level using one of the following methods: simple fold change, Z-score, signal-to-noise ratio, Pearson
correlation, Spearman correlation, F-test, Welch’s t-test, shrinkage t-test, dependent t-test, Wilcoxon rank-sum
test, and Wilcoxon matched-pairs signed-ranks test. After the statistics of the genes are calculated, the method
allows users to perform pathway analysis using one of the 10 following methods: weighted KS-test, unweighted KS
test, Wilcoxon test, over-representation analysis (ORA), sum, mean, median, and maxmean statistics, as well as one
and two sample t-test. For methods that require permutation, users can either choose to permute the genes or the
sample labels. The tool also adjusts the p-values using one of the following methods: Benjamini-Hochberg FDR,
Benjamini-Yekutieli FDR, Bonferroni FWER, Sidak FWER, Holm FWER, Holm-Sidak FWER, Finner FWER,
Hochberg FWER.

For each dataset, the output is a list of p-values for the pathways. The significant pathways can be viewed online
or exported as excel files (or compressed). For data integration, two view modes are available. The union mode
displays pathways that are significant in at least one dataset. The intersection mode only displays pathways that are
significant in all datasets. Using these modes, the user can effectively balance the sensitivity and specificity of the
analysis.

14 mitch

mitch [62] is available as a Bioconductor R package. Overall, mitch is a framework for pathway analysis and data
integration (multi-cohort and multi-omic integration). The input of mitch includes (1) pathway information uploaded
in GMT format, (2) differentially expressed genes/features for multiple datasets/data types. Users need to upload a
list of differential expressed features, together with their p-values and log (base 2) of fold changes. Given multiple
datasets, mitch only keeps genes/features common across all datasets. By default, for each dataset, a differential
score (D) is calculated for each feature using the following formula: D = —logio(p — value) x sgn(logaF'C'). Users
can also upload their own scores if they wish not to use the default scoring formula. Based on the activity scores,
mitch ranks the features in each dataset. The rankings in all datasets are then merged into a single table, where
rows are genes/features and columns are the datasets.

For each pathway, mitch divides the genes in the rank list into two groups: (1) genes that belong to the pathway
and (2) the remaining genes. For each dataset, this will result in two vectors: ranking of genes belonging to the
pathways and rankings of the remaining genes. Multivariate ANalysis Of VAriance (MANOVA) [63] is then applied to
test for the difference between the two groups of genes in all datasets. If only one dataset is provided, then MANOVA
is simply an ANOVA test. If the difference between the two groups is significant, this pathway is considered to be
significantly enriched. Moreover, the enrichment score for each pathway is calculated in each dataset separately by
the formula s = 2(R; — Ry)/n, where R; is the mean rank of genes in the pathway, Ry is the mean rank of genes



not in the pathway, and n is the number of genes overall. The effect size S for each pathway is then calculated as
the square root of the sum of squared s values across all datasets.

The output of mitch is a ranked list of pathways, together with their MANOVA p-values and adjusted p-values
(using FDR). The table also includes other columns representing effect size, enrichment scores in every dataset as
well as standard deviation (SD) of these enrichment scores across datasets. The results can be visualized in several
plots in high-resolution PDF. Outputs contain scatterplots of DE scores derived from the directional p-value method,
filled contour plots of ranked profiles, histogram of gene set sizes, scatter plot of effect size measured by S distance,
and statistical significance measured adjusted p-values and a pairs plot of s values for all gene sets. In addition,
detailed plots are generated for a specified number of gene sets according to the prioritization approach selected.
These include pairwise filled contour plots, pairwise scatter plots, and violin plots of enrichments in each contrast.

15 ReactomeGSA

ReactomeGSA [64] is available as an R Bioconductor package as well as a web application. This tool allows users
to perform pathway analysis using multiple datasets from the same or different types of omics. Supported data
include microarray measurements, RNA-Seq raw and normalized read counts, proteomics spectral counts, and
intensity-based quantitative data. By default, the software supports the analysis using the Reactome database. The
input dataset can be uploaded manually or imported from Expression Atlas and Single Cell Expression Atlas. This
tool also supports both discrete quantitative and continuous data. For both types, ReactomGSA has implemented
some modules with the purpose of processing the raw data in terms of normalizing and transforming.

Given an input matrix, ReactomeGSA first maps the gene identifiers to human UniProt identifiers. Next,
ReactomeGSA applies one of the three methods for pathway analysis: Camera through the “limma” package [65],
PADOG through the “PADOG” package, and the single-sample gene set enrichment analysis (ssGSEA) [66] through
the “GSVA” package [67]. It is notable that the differential expression analysis is done implicitly at the pathway
level by applying these methods. Therefore, all the mentioned methods work directly with expression values. The
parameters for the pathway analysis (such as the kernel to use for the ssGSEA analysis) are automatically chosen
based on the data. Finally, the pathway analysis results are converted to Reactome’s internal data format so that,
this method can visualize the results using the PathwayBrowser module. The results from different analyses can be
seen and interactively explored side by side.

The R package also supports the analysis of single-cell (scRNA-seq) data. For this type of data, the mean
expression of genes within a cluster through either Seurat’s [68] “AverageExpression” function or scater’s [69]
“aggregateAccrossCells” function, depending on the input object, is calculated. Then, all of the proposed analysis
methods are applicable to this type of data. This results in one pathway-level expression value per cell cluster.

16 iODA

iODA (integrative Omics Data Analysis) [70] is a java software that peforms integrative pathway analysis using
multi-omics and multi-cohort integration. This tool supports the analysis of transcriptome profiles (mRNA or
miRNA expression data) and protein-DNA interactions (ChIP-Seq data). Gene/miRNA expression data can be
imported as a matrix with two biological conditions, e.g., disease and control. The tools applies six different methods
for differential analysis at the gene level: Least Sum of Ordered Subset Squared (LSOSS) [71], Cancer Outlier Profile
Analysis (COPA) [72], Maximum Ordered Subset T-statistics (MOST) [73], Outlier Robust T-statistics (ORT) [74],
Outlier Sum (OS) [75], and the t-test. The DE genes detected by at least four methods are considered as putative
outliers. iOAD also calculates a metric that represents the accuracy of each method. Based on this, users can
select the suitable method for the analysis. As a result, iODA produces the list of DE genes for pathway analysis.
For ChIP-seq data, iODA uses MACS [76] to detect significant peaks of the protein binding site. Then, it uses
PeakAnalyzer [77] tool to assign the binding sites to target genes.

Next, iODA uses two alternative strategies for pathway analysis. In the first approach, it intersects the genes
obtained from the input datasets. These are considered DE genes and will be used to calculate the p-values of the
pathways using the hypergeometric test (ORA). In the second approach, iODA performs pathway analysis for each
dataset, and then intersects the significant pathways to obtain the final list of significant pathways. The tool also
adjusts the p-values using FDR.



17 PARADIGM

PARADIGM [78] with available source code on Github is designed for multi-omics data integration and pathway
analysis. The input includes matrices of multiple data types: gene expression, copy number variation, and proteins
levels. Pathways are collected from National Cancer Institute (NCI) Pathway Interaction Database (PID).

PARADIGM converts each pathway into a distinct probabilistic model, represented as a factor graph with both
hidden and observed states. In details, a pathway is first modeled as a directed acylic graph where nodes are genes
and edges are defined as either positive or negative influence on the downstream nodes. Each gene is then modeled
as a pathway diagram using a set of four different biological entities for the gene, which describe the DNA copies,
mRNA and protein levels, and activity of the protein, respectively. This allows the incorporation of all supported
types of omics data. Next, the method constructs a list of factors that represent various types of interactions across
genes including transcription factors to targets, subunits aggregating in a complex, post-translational modification
and sets of genes in a family performing redundant functions. Finally, these factors are added to specify the factor
graph for each pathway.

PARADIGM takes observed experimental data, then calculates scores for all nodes (observed states) and specifies
the probability of the node being active (hidden states). For each node score, a positive or negative value denotes
how likely it is for the node to be active or inactive, respectively. The score is calculated to maximize the probability
of the observed values. For a single node, a p-value is associated with each score of each sample such that each node
can be tagged as significantly active (1), significantly inactive (-1), or not-significant (0). Finally, the pathways can
be ranked based on the average number of samples in which significant activity is detected per node.

18 microGraphite

microGraphite [79] is available as an R function under the AGPL-3 license. The tool allows users to integrate miRNA
with mRNA data for pathway analysis. User can download the R source code from the authors’ website. In order to
implement this code, two addition R packages graphite and Clipper [80] from BioConductor are required. The input
for this method is an expression matrix, which is a combination of miRNA and mRNA expression matrices. Its
headers are sample names and its row names are in gene IDs and miRNA IDs. The sample annotations are also
needed to group the samples into different experimental conditions.

First, applying graphite, the pathway annotations are converted into gene—gene networks. Based on the resulted
network, microGraphite expands the gene-based pathway graphs with miRNA-gene interactions derived from (i)
validated miRNA-gene interactions from mirTarBase, miRecords, and a manual bilbilographic research; and (ii)
predicted miRNA-target interactions from KEGG, Reactome, Nature Pathway Interaction (NCI), and Biocarta
databases.

Next, microGraphite performs pathway analysis using the algorithm implemented in Clipper. The method
follows a two-step strategy. In step 1, it selects pathways with covariance matrices or means that are significantly
different between experimental conditions. In Step 2, on the selected pathways, it identifies portions of the pathway
mostly associated with the phenotype. Based on graph decomposition, the pathway network is decomposed into
fully-connected components, termed as ‘cliques’. Each clique is analyzed independently (according to the test on the
means and/or concentration matrices) to obtain a p-value that represents the statistical significance of the clique.
Next, the method builds a junction tree — having cliques as nodes and satisfying the running intersection property
stated as: for any cliques C1 and C2 in the tree, every clique on the path connecting C1 and C2 contains C1 N C2.

Using the junction tree structure (that resembles the signal propagation of the pathway), the method computes
the scores of every path in the graph. A path is a list of adjacent significant cliques (allowing a maximum of one
gap, where a gap is defined as a non-significant clique). The score of a path is a function of all the p-values of the
cliques contributing to the path. To avoid redundant path information, the Clipper approach would be performed
on each significant pathway recursively. Finally, all the top-scored paths are combined to generate a meta-pathway.
In the last step, the meta—pathway paths are analyzed and ranked according to their involvement in the phenotype.
A sample permutation approach (permuting samples across groups) is used to estimate the significance levels of the
test on the mean and on the concentration matrices either for the whole pathway or for the cliques.

The output of the method includes: (i) a list of pathways composed of genes and miRNAs associated to the
phenotype, and (ii) a list of scored circuits composed by nodes, both genes and miRNAs and interactions that are
strictly involved in the biological problem studied.
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19 MOSClip

MOSClip (Multi-Omics Survival Clip) [81] is a standalone R package that exploits the topology of pathway
annotations and integrates multi-omics data to identify pathways or pathway modules associated with right-censored
survival data. MOSClip supports four types of omic input: (1) Expression (X - numerical matrix, data should be
normalized and log-transformed), (2) Methylation (M - numerical, 8 value matrix), (3) mutational (U), and (4)
copy number variation (CNV - C) should be in binary matrices (presence/absence of mutation/CNV or GISTIC
thresholded data for CNV). Patient matching across the different omics is required. Moreover, the patient clinical
data should be submitted since they are used to extract the Overall Survival (OS) and Progression Free Survival [82].
Another input is pathway data/gene set. Using pathway annotations, a graph structure of pathway is constructed as
model G = (P, E) where P represents nodes (genes), and E represents edges (genes interaction). From this graph,
all possible connected components are found, which refer to as pathway modules. Thus, multi-omics survival tests
are performed either on a pathway or module level.

For each pathway or pathway module, MOSClip will go through the following process: (1) data filtering to
keep only the genomic features that belong to the pathway/module; (2) dimension reduction on filtered data; (3)
concatenate the data across data types by patient matching, and (4) perform survival analysis using the multivariate
Cox proportional hazard model [83]. For dimension reduction, MOSClip uses PCA and hierarchical clustering on X
and M. For U and C (binary), it summarizes the binary matrix with a sample binary vector having 1 if at least one
gene in the pathway/module is mutated, amplified, or deleted and 0 otherwise, or a numeric vector that counts
the number of altered genes in the pathway. The output is one Cox p-value for each pathway, and the coefficient
for each variable is provided in step (3). MOSClip also provides different approaches to identify the genes most
associated with survival: the absolute value of gene loadings is used in PCA, then the Kruskall-Wallis test [84] is
used to compare measurements across patient groups for cluster analyses, and the three genes with the highest
number of events are reported for binary data.

Furthermore, MOSClip provides several graphical tools to browse, manage and help interpretation of results,
such as heat maps of p-values and prioritized genes, the radial plot of pathway frequencies across multiple omics,
network visualization, omics combination, and survival annotation (Kaplan-Mayer curves and log-rank tests are
used to stratify patients according to the combination of pathway/module omic variables).

20 IMPRes-Pro

IMPRes-Pro (Integrative MultiOmics Pathway Resolution) [85] is available as a web-based application that is able
to detect biological pathways associated with specific diseases by using the integration of transcriptomics and
proteomics data with the annotations from gene-protein interaction databases. IMPres-Pro utilizes the information
from three public databases to construct a background network: (1) protein-protein interaction (PPI) from STRING
database [80], (2) gene-gene interaction from KEGG, and (3) transcript factor (TF)-target gene network derived
from TRRUST database [87]. The TF - target gene regulations work as a joint to connect PPI and pathway network.

IMPRes-Pro allows users to integrate gene expression data with protein data in one analysis. Users need to
upload the data matrices, in which rows are genes/proteins and columns are samples. Gene and protein IDs should
be in the ID format used in KEGG and STRING PPI databases, respectively. IMPRes-Pro also provides an ID
converter tool to users. Each sample must exist in both data matrices (gene and protein expression matrices). The
sample grouping information is also required. The grouping information can be different experimental conditions or
different experimental groups at different time points. Thus, a differential expression analysis algorithm is applied to
the expression input. In the use case of the case-control expression data, a t-test with a Bonferroni correction [88] is
used while in the use case of a time-series expression data, maSigPro - a regression-based approach [89)] is executed.
Users can also provide the seed nodes (mandatory) and the target nodes (optional). The seed nodes must be protein
nodes. The software uses differentially expressed genes and proteins as target nodes if target nodes are not provided.

Given the input, the method implements the step-wise active pathway detection algorithm on the background
network. Starting from one or more seed nodes, the method explores all potential paths that include as many target
nodes as possible. These paths then form a pathway network. Next, IMPRes-Pro uses shortest path algorithm [90]
with a customized penalty function to achieve the optimal pathway network. In details, for each node, the method
calculates its static penalty and dynamic penalty scores. For static penalty, if the case-control data is submitted, the

method calculates the static penalty using node penalty formula: penalty(v) = m, where p — value(v)
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is the p-value of node v retrieved from differential expression analysis using t-test. If the time-series expression data
is used, the static penalty is calculated using edge penalty formula penalty(e) = 1 — |correlation(Vy, Va)|, where
correlation(Vy, V3) is the Pearson’s correlation of two vectors V; and V5, — the vectors of the time-series expression
data of node v; and vs. The node’s static score is then updated iteratively. For dynamic penalty, it is calculated
dynamically in the dynamic programming process. The algorithm stops when each node achieves a minimum
involvement score, where involvement score is the sum of its static penalty and its dynamic penalty.

The final active pathway network is detected by truncating and backtracking. If a leaf node (a node with
no downstream nodes) is not a target node, it is regarded as redundant and will be truncated. When a node’s
downstream nodes are all truncated, but the gene itself is not a target node, it will also be truncated. IMPRes-Pro
returns the final active pathway network in the form of a tree structure graph rooted at the seed proteins.

21 KaPPA-View

KaPPA-View (Kazusa Plant Metabolic Pathway Viewer) [91] is a web-based tool that allows users to visualize
metabolic and transcriptome data for the analysis of plant metabolic pathway maps. The input is quantitative
values for transcripts and/or metabolites submitted by the user as a .csv file. At the time of writing this review, this
tool has provided a collection of 150 Arabidopsis, rice, Lotus japonicus, and tomato metabolic pathway maps. Using
pathway maps information from the internal library, KaPPA-View is able to overlay input gene-to-gene and/or
metabolite-to-metabolite relationships as curves on a metabolic pathway map. However, it is possible for users to
upload their pathway maps, as well.

The KaPPA-View server inserts colored symbols (color pathway indicators for overall changes to transcripts and
metabolites in individual pathways, subclasses, and categories) corresponding to a defined metabolic process on
the maps and returns them to the user’s browser. The changes of individual genes or metabolites in the form of
different colors can be seen interactively through pop-up windows. The presentation of data in this manner is helpful
in displaying quantitative data changes for individual transcripts and metabolites between different experimental
conditions on the same set of metabolic pathway maps. Consequently, this facilitates the discussion of gene function.
Furthermore, gene-to-gene and/or metabolite-to-metabolite relationships such as co-expression correlations of genes
can be displayed on the maps. This is the distinctive feature of KaPPA-View and will help users, for example, to
analyze the relationships between metabolic genes and transcription factors that control their expressions (functions
of a transcription factor that regulates genes on a metabolic pathway).

22 30mics

30mics [92] is a web-based application that supports visualization of multi-omics data using correlation networks
and pathway enrichment analysis of metabolomics data. Supported data types include transcriptomics, proteomics,
and metabolomics. Five major modules are provided in this tool: correlation and coexpression analysis, GO-based
enrichment analysis, phenotypic analysis, and pathway enrichment analysis. Supported identifiers include Entrez
IDs, UniprotKB IDs, and PubChem CIDs. The website also has a converter that converts gene name to ID. Each
input file should consist of the transcript, protein, or metabolite IDs and their corresponding measurements (e.
g., concentration or intensity levels). After uploading input files, the server automatically computes correlation
coefficients, coexpression values, and pathway enrichment scores.

In the correlation analysis, the Pearson correlation coefficients of expression values of each pair of input omics
data are computed. As a result, a correlation network, in which nodes are representative of omics IDs and edges
show the correlation between them, is produced that is available for users. This analysis is applicable to different
types of omics which are mentioned in the previous paragraphs. In the case of having missing omics data, the
missing omics type is recovered by text mining of the iHOP [93] results. The coexpression analysis module provides
heatmaps as output in which rows are the expression of input molecules, and columns are the expression differences
between experimental groups (treatment/control groups or time-series experiments). Each cell in the resulting image
is colorized based on the input expression value. In the phenotype analysis, the downloaded OMIM [94] data which
specifies the related genes in the human genome with specific phenotypes is using in order to identify the genes and
genetic disorders (the phenotype analysis is used for human phenotypic mapping).
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Using metabolites input data, the pathway enrichment analysis component can be applied in two normal and
enriched modes: the normal mode displays user-provided metabolites via simple metabolite mapping to a pathway
from the KEGG pathway database, and the enriched mode, in which by two user-provided datasets (a metabolite set
and a significantly changed metabolite set) and applying a hypergeometric test, the enriched pathways from KEGG
and HumanCyc databases would be identified. GO-based functional enrichment analysis is performed through
the DAVID [95] knowledgebase Application Platform Interface (API). Three independent GOs are included: (i)
biological processes, (ii) cellular components, and (iii) molecular functions. The input transcripts are used in 30mics
to calculate the p-value and FDR (False Discovery Rate) of each GO term using a modified Fisher’s exact test in
the DAVID API. The enriched GO terms associated with the given Entrez Gene IDs are reported in 30mics. Users
can export network images in SVG or SIF formats.

23 InCroMAP

InCroMAP [96] is available as a stand-alone Java software that can be used on almost every operating system. This
method was developed for multi-omics enrichment and pathway visualization. This tool supports different types of
omics data (genomics, transcriptomics, proteomics, epigenomics, and metabolomics), which may come from various
platforms. It supports automatic mapping between different metabolite identifiers (e.g., InChIKeys, HMDB, common
synonyms) and different proteomic and transcriptomics annotations. Users can also upload user-defined mappings.
When analyzing data using this software, any entries without InChiKey ID (i.e., information on compound classes)
will be automatically discarded. It is because InCroMAP uses InChiKey as an internal identifier in order to merge
four different compound databases (HMDB, LIPIDMAPS, KEGG, and PubChem).

In the pre-processing step, users need to normalize the data and perform differential analysis externally to calculate
the gene-level statistics (e.g., p-values, fold changes, or log ratios). Then, the gene list and computed statistics can
be uploaded to the software using a tabular format (similar to CSV format) which consists of platform-dependent
meta-data columns containing appropriate identifiers (e.g., Affymetrix, EntrezGene, HMDB IDs) and data columns
corresponding to the fold-changes or p-values. Another input file required from users is the pathway information
obtained from pathway databases (such as KEGG, Reactome, BioCarta) in BioPAX format.

For each data type, InCroMAP first applies a threshold to identify the DE genes within each dataset (using fold
change or p-values). Then the intersection or union of identified DE genes are considered for pathway enrichment
analysis using ORA. The software adjusts the computed p-values using FDR. The output is a list of pathways
and their nominal and adjusted p-values. There are two different visualizations of enriched pathways. One is the
metabolic overview function of InCroMAP that generates an interactive global map of cellular metabolism, in which
each subordinate metabolic pathway is colored according to the significance of its enrichment. The other is the
integrated pathway-based visualization of data from multiple omics platforms. The tool enables users to browse
through and visualize different KEGG pathways interactively.

24 Pathview

Pathview [97] is available as a Bioconductor’s R package and a web application. This tool is mainly designed to
provide a comprehensive view of a variety of biological data on pathway graphs. The format of input files can be
either tab-delimited text (txt) or comma-separated values (CSV). Two different following categories can be imported
as input in matrices or vectors format. First, gene data cover any data that map to unique gene IDs, including
genes, transcripts, genomic loci, proteins, enzymes, and attributes. Second, compound data cover any data that
map to unique compound IDs, including compounds, metabolites, drugs, small molecules, and their attributes. The
pathway IDs can be selected (derived from the KEGG database) manually or automatically by the Pathview for
integrative analysis. The functional Mapper module implemented in this tool can map 12 types of gene or protein
IDs and 21 types of compound or metabolite-related IDs to standard KEGG gene or compound IDs and also map
between these external IDs. For other types of IDs (for instance, Affymetrix microarray probe set IDs) not included
in the common ID lists, Pathview’s auxiliary functions will map user data to pathways when users manually provide
the ID mapping data.

Pathview works with both numeric (e.g., expression levels) and categorical (e.g., gene or compound ID) data.
In the numeric case, the GAGE [98] method is applied to the data to calculate the p-values of the pathways. For
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categorical data, a hypergeometric test is applied. When both types of data are present, analysis is done on each
data type separately, and then the results are combined into global statistics/p-values through meta-analysis. This
tool outputs the pathway graphs with user data mapped in two views. First, the native KEGG view, in which the
KEGG pathway diagram is used and the input transcriptomes and metabolites are laid. This view is considered more
interpretable as all detailed meta-data such as input, output, connections, and tissue are available. The second view
is Graphviz [99] view that provides better control over node/edge attributes and a better view of graph topology.
The pathway analysis statistics will be returned, and all analysis results will be included in a zipped folder for
download.

25 PaintOmics 3

PaintOmics 3 [I00] is available as a website, and it supports the analysis of the following data types: gene expression,
metabolomics, region-based omics (i.e., ChIP-seq, DNase-seq, ATAC-seq, Methyl-seq), and regulatory-based omics
(miRNAs, transcription factors, or other factors). The tool allows users to integrate multi-omics data and perform
pathway analysis using KEGG pathways. The input can be multiple files of the same or different types of supported
omics in a tab-delimited format that contains the log fold change (e.g., disease vs. control) for each feature. Users
can also input the list of DE genes directly. The tool automatically recognizes Ensembl, PDB, NCBI RefSeq, and
Entrez ID. Users can also upload user-provided mapping. For mapping metabolites data to KEGG compounds,
PaintOmics 3 generates a list of ranked candidates based on how similar their names are. Users can review and
eventually change metabolite assignments if necessary. The website requires users to upload additional files for
ID mapping for region-based and regulatory-based. With region-based data, the information of the chromosome,
start and end position, and a quantification value for the regions must be provided, along with a GTF file with the
reference genome annotation. PaintOmics 3 maps each region to its proximal gene(s) with the RGmatch [I0T] tool,
which takes into account the relative position of the region with respect to the specific areas of the gene (such as
promoter region, first exon, intronic areas). With regulatory-based omics, a tabulated file containing the associations
between miRNAs/TF and their respective genes should be included in the input.

For each data type, the website first identifies the DE genes (by applying a threshold on the log fold change
or provided by users) and then performs enrichment analysis using ORA. Then, for each pathway, the p-values
from multiple data types are combined using Stouffer’s or the weighted Fisher’s method. The tool also adjusts
the p-values using FDR. Users can view the result in the form of a table, in which rows are KEGG pathways and
columns are their corresponding p-values for each data type as well as combined p-values.

PainOmics 3 provides three modules for visualizing the above analysis result. First, a pie chart and hierarchical
structure show that KEGG pathways are organized in around seven main classifications (Cellular Processes, Drug
Development, Environmental Information Processing, Genetic Information Processing, Human Diseases, Metabolism,
and Organismal Systems) and/or over 50 secondary classifications. The second module is a pathways interaction
network, in which the nodes represent pathways and edges indicate shared features among them. Finally, the
last module allows users to explore individual pathways, showing the interactive pathway diagram, and the global
heatmap contains information complementary to this pathway.

26 GSOA

GSOA (Gene Set Omic Analysis) [102] is available as an R script and a python-bash version. The tool supports the
integration of multi-omics data for pathway analysis. The input includes multiple matrices (one matrix per data
type), grouping information, and pathway information in the format of a GMT file. Supported data types include:
gene expression, copy number variation (CNV), SNP, and other omics data. In each matrix, rows represent genomic
features whole columns represent samples.

For each pathway, the omics measurements are filtered to keep only genes belong to that pathway. After filtering,
if users input multiple omics data files, GSOA merges the data into a single data frame that includes whichever
genes map to a given pathway for each omic type, even though different omic technologies may profile different
genes. However, GSOA only considers samples that appear in all data types. Next, a classification method is applied
to predict the class of each sample. By default, GSOA uses radial basis function support vector machine kernel
(RBF SVM Kernel) [103] as classification algorithm and k-fold validation method with k = 5. Users can modify
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these default parameters and clustering method as per their interests. After classification, the method assesses the
prediction accuracy by calculating the area under the receiver operating characteristic curve (AUC). Relatively high
AUC score means that the class of sample is accurately predicted. For example, an AUC score of 0.5 means that the
classification is similar to a random guess. GSOA also performs cross-validation for randomly selected pathways
to remove any correlation between pathway sizes and AUC values. Under the null hypothesis that the correlation
exists, for each pathway, a p-value is calcualted as the fraction of AUC values that exceed the observed AUC value.
The output of GSOA is a list of p-values ranked according to their nominal and FDR-adjusted p-values.

27 PathwayPCA

The PathwayPCA [I04] is available as an R Bioconductor package for integrative pathway analysis using multiple
types of molecular data (SNV, CNV, Proteomeics, miRNA, mRNA, Methylation data, Somatic Mutation data).
The users need to provide three input files: (1) pathways collection in .gmt format, (2) expression data files (comma-
separated .csv, fixed-width .fwf, or tab-delimited .txt) in which rows represent samples and columns represent genes,
and (3) phenotype file in .csv format.

First, using the CreateOmics function, users can transform the input (pathways, expression, and phenotype) into
a S4 data object. After the S4 object is prepared, users can call the functions AESPCA _pVals and SuperPCA _pVals
to execute the methods AES-PCA [105] and SuperPCA [106], [107], respectively. The AES-PCA method is based on
Adaptive, Elastic-net, Sparse PCA. This function first computes the latent variables for each data type and each
pathway. Given a data type, the latent variables are tested against the phenotype, either using a regression model
g(phenotype) = a + SPC1 (default) where o and S are optimizable coefficients, or a link function g() that varies
according to the response variable (i.e., Cox Proportional Hazards, identity, and logit link functions for survival,
continuous, and binary response variables, respectively). Also, the number of permutations can be specified via
numReps input argument. This function returns a named vector of permutation p-values. Finally, the obtained
p-values are adjusted (using predefined methods including: Benjamini-Hochbergand FDR, Benjamini-Yekutieli
FDR, adaptive Benjamini-Hochberg FDR, two-stage Benjamini-Hochberg FDR, Bonferroni FWER, Holm FWER,
Hochberg FWER, Sidak single-step FWER and Sidak step-down FWER), and then sorted in a data frame.

PathwayPCA has extended the AES-PCA algorithm for integrative analysis of two omics data types (for example
gene expression and proteomics data). In the proposed global test, after computing the first PCs for each type of
omics separately for a pathway, the regression model g(phenotype) = a4+ 1 PClprotein + B2PClrn 4 is fitted (the
g() function as mentioned above can differ based on the response variable), and a global test of the null hypothesis
Hy : 8= ($132)! = 0 would be performed. Then, the joint effect of proteins and gene expressions in the pathway
can be tested using a two degrees of freedom likelihood ratio test. However, we note that the package does not
implement this integration. After identifying the significant pathways in each input omics dataset, by performing an
inner join the significant pathways in all omics datasets are listed.

The SuperPCA is a supervised approach. In this method, first each input dataset are tested (using a cross
validation approach) to identify the most relevant genes with the phenotype. Therefore, genes are filtered by
applying a threshold. Next, silmilar to AES-PCA, the PCs for each pathway and each set of filtered genes are
extracted. Lastly, the p-value for each pathway is computed using a two-component mixture of Gumbel extreme
value distribution.

As a result of applying AESPCA _pVals and SuperPCA _pVals functions, a table including the analyzed pathways
sorted by p-values with additional fields including pathway name, description, number of included features, and
estimated False Discovery Rate would be returned. Also, PathwayPCA implements a range of functions for different
purposes, including, getPathPCLs and SubsetPathwayData. The first function, getPathPCLs, with two required
input arguments (the resulted output from AESPCA _pVals or SuperPCA _pVals function and a pathway name),
returns two data frames, 1) a data frame of the samples and values for each principal components and 2) a data
frame of the loading values corresponding to each gene. The SubsetPathwayData function, which has two mandatory
inputs (the S4 object and a pathway name), returns a data frame contained the subset of assay data, by the matching
gene symbols or IDs in the specified pathway, and the response data.
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28 CPA

CPA (Consensus Pathway Analysis) [T08] is a web-based platform for multi-cohort analysis. The input data for this
tool include (i) pathways definition and (ii) gene data. This tool supports KEGG and GO pathway databases. Also,
users can import their selected pathway collection in GMT format. For omics data, users can either import a list of
DE genes, a list of genes and the corresponding fold changes, or a gene expression matrix. CPA maps all input genes
into Entrez IDs to be compatible with the supported pathway databases.

Eight pathway analysis methods are included in CPA, which enable users to perform each on their input data.
These are GSEA, GSA, FGSEA, PADOG, Impact Analysis, ORA/WebGestalt, KS-test and Wilcox-test. Users can
choose each strategy to analyze their input data per desire. In addition, users are able to perform meta-analysis on
multiple datasets and combine the resulted p-values using one of the Fisher, Stouffer’s, addCLT, or minP methods.

After completing each analysis, a pathway-pathway graph is generated. Each node in this graph represents a
significant pathway. Nodes are sliced based on the number of input datasets and the number of analysis methods
performed on each input dataset. If the pathway is significant in a specific dataset and an applied method, the slice
is colored. Otherwise, the slice remains white. The node’s size corresponds to the number of genes within that
pathway, and the number of DE genes specifies the thickness of the node’s border. The details statistics related to
each node and slice can be explored by hovering over each node. Users can interactively remove or add any number
of pathways to this graph representation. Also, by selecting each node, a table is shown which includes information
regarding genes in the pathway, the p-value and fold change in each dataset, and each pathway analysis method. All
the analysis results besides the generated images are exportable.

29 pathwayMultiomics

PathwayMultiomics [109] is available as an R package. The package allows users to integrate analysis results obtained
from multiple readouts (e.g., multiple datasets or multiple types of omics data). Note that this tool does not support
pathway analysis using single-omics data, so users have to perform analysis on each readout (single-omics dataset)
themselves by using any existing pathway analysis methods. After calculating the p-values for each pathway for
each readout, users can provide the p-values for pathwayMultiomics to perform data integration. The input for this
tool is a matrix of p-values with rows representing pathways and columns representing the different analyses.

The procedure to integrate input p-values is as follows. Given multiple p-values for a pathway — one for each
readout — pathwayMultiomics starts with calculating a MinMax statistic for this pathway. Specifically, having
p-values from all input datasets for a pathway, pathwayMultiomics first generates all possible combinations of
any two p-values. For each pair, it then selects the maximum p-value. Next, among these selected p-values,
pathwayMultiomics picks the minimum value as the MinMax statistic. In this case, the MinMax statistic is also
known as the second order statistic (second smallest p-value) of the input p-values for each pathway. The statistical
significance of the chosen MinMax statistics for each pathway is then assesed by utilizing an application of Beta
distribution. That is, assuming all input p-values for a specific pathway are independent and uniformly distributed,
the rth order statistic p(y will follow a Beta distribution f(a = r, 3 = G —r+ 1), where G is the number of p-values.
Note that » = 2 in the case of MinMax statistic. The MinMax statistic is considered statistically significant if its
p(ry value is less than a predefined threshold. Finally, the output of pathwayMultiomics is a table representing
each pathway’s computed MinMax statistic, p-value, and “driver omics”. The driver omics are basically the pair of
analyses that have the smallest p-values.

30 rPAC

The method rPAC (route-based pathway analysis for cohorts of gene expression datasets) [I10] is designed to find
the potential routes of a pathway that are significantly associated with the disease of interest. The input for rPAC
includes: (1) a set of pathways in KGML format and (2) multiple gene expression matrices with genes in rows and
samples as columns. A route can be either signaling route or effector route. Signaling route typically starts from
ligand /receptor and follows a path to the primary transcriptome factor (TF). Effector route captures the cellular
process where the primary TF binds to the target genes to regulate their expression.
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Given the pathway file from KEGG (in KGML format), rPAC first extracts the nodes and edge information
in which nodes include ligand, receptor, gene, and transcription factor whereas edges describe the relationships
between genes. Next, rPAC constructs the pathway graphs based on the extracted information and then performs a
Breadth-First Search (BFS) to identify potential routes. Only routes involving transcription factors are considered
for further analysis. Each node k in route 7 is assigned an expected value F;; based on its effect on activating the
involved transcription factor (activation or inhibition):

1, ifk=1
By, = .
E; -1 * ej, otherwise

where e;, is +1 if the edge is activation and —1 in the case of inhibition of transcription factor.

In the next step, each node £ in route ¢ and sample j is evaluated and assigned a value v;;. If a node corresponds
to a single gene, then v;;;, of this node equals to log2 ratio of the gene. In the second form, if a node is a bundle
node which is a combination of multiple nodes, the v;j; is computed as follows:

M
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where M and N show the number of up and down-regulated nodes in the bundle, vy, and v, are their corresponding
M

values. Also, Ujjr = —, where ny, equals the total number of nodes in bundle k. Furthermore, a bundle node can
ng

explicitly imply AND or OR interactions between membered nodes. In OR form, up/down-regulating of some of the
nodes are enough to activate the transcription factor. On the contrary, the AND form requires all the nodes involved
in an AND interaction to up/down-regulated to activate the transcription factor. Uy, is empirically decided as 0.5
for AND bundle and 0.2 for the OR bundle.

1 )
Finally, rPAC assigns a score S;; for each route i with respect to each sample j as S;; = — * EZ":I Cijk * Eir,
n

where n; is the number of nodes in route 7, and Cjj;, is the contribution value of node % in route i for sample j. The
activity score for each route ranges between —1 to +1 based on the down or up-regulation of that route. As a result,
a matrix of computed scores for a specific route for a cohort of samples is produced. The p-value for each route
within the same pathway is computed by testing a two-tailed hypothesis using a null distribution generated from
sampling with replacement.

For each route, rPAC also calculates two metrics named Proportion of Significance (PS) and Average Route Score

1
ARS). The PS; value of route ¢ is calcualted as PS; = — % ‘Z: I;; where J is the number of samples in given
J J=1"1

cohor and I;; = 1 if the p-value of the route i in sample j is less than the threshold (default value 0.05); otherwise

I;; = 0. The PS,; value represents the rate that a route is altered within a cohort (0 < PS; < 1). The ARS,; value is

1
calculated as ARS; = i * Z}]:1 Sij. The ARS; value represents the average of yielded activity scores of a route

within all samples in a cohort (—1 < ARS; < 1).

31 clusterProfiler 4.0

clusterProfiler 4.0 [IT1] is available as an R package on Bioconductor. The software allows users to perform integrative
pathway analysis using transcriptome and epigenome data. The method requires the following input: (i) one or
multiple lists of differentially expressed genes, or lists of genes and their statistics (p-values and log fold change), and
(ii) pathway database. For epigenome data, the authors of clusterProfier also provides an implementation of their
previously developed method, ‘ChIPseeker’ [I12], to map genomic regions to genes. The second input (pathway
information) can be provided in the “gmt” (gene matrix transpose) format. Alternatively, users can use embedded
databases that include KEGG, GO and WikiPathways. Given that the input includes multiple lists of genes, users
can perform both multi-omics integration and meta-analysis.

Given a single list of genes (and their statistics) and a pathway database, users can perform pathway analysis
using ORA or GSEA using the following functions: enrichGO, enrichKEGG, enrichMKEGG, enrichWP, enricher,
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9seGO, gseKEGG, gse MKEGG, gse WP, GSEA. The obtained p-values for the pathways can be adjusted using one
of the following methods: Holm’s, Bofferoni’s, Hochberg’s, Hommel’s, Bonferroni-Holm, or Benjamini- Hochberg’s
false discovery rate (FDR). Given multiple lists of genes, users can perform analysis for each list and then compare
and contrast the results using the compareCluster function. This function returns a table of pathways with multiple
adjusted p-values — one for each input list. Users can further visualize the results in a side-by-side graph for
comparison analysis.

32 Subpathway-GM

Subpathway-GM [113] is currently available as a function of the iSubpathwayMiner R package [114]. The method
can perform integrative pathway analysis using transcriptome and metabolome data. The input of the method
includes a list of differentially expressed genes (or genes of interest), and a list of metabolites. The method also
provides embedded pathway information curated from the KEGG database.

Given the input of differentially expressed genes and metabolites, the method calculates the enrichment score for
each pathway as the following process. First, it maps the interesting genes (first input) and metabolites (second
input) to the nodes in the pathway graph. Especially, metabolites are directly mapped to metabolite nodes, whereas
genes are mapped to enzyme nodes. The genes and metabolites are then referred to as ‘signature nodes’ of the
pathway graph. Second, the method finds all signature subgraphs of the underlying pathway graph. To this aim, it
searches for the shortest path between any two signature nodes. If the shortest path length is smaller than a specified
threshold, then the two signature nodes and other nodes (non-signature nodes) belonging to the path are added to
the same node-set. The method next extracts the corresponding subgraph in the pathway graph according to each
node-set. The subgraphs with a number of nodes smaller than another threshold are then filtered out. Finally, the
method calculates the enrichment score for each subgraph using the hypergeometric test. The default background is
all possible genes and metabolites of the underlying species. The p-value of the pathway is the smallest p-value
of its subgraphs. The method repeats the above process for all metabolic pathways to obtain the p-values for all
pathways. Finally, Subpathway-GM outputs the pathways, subgraphs, and their p-values.
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