
Backgrounds
• Advances in high-throughput technologies
produces a huge amount of genomic data.

• High demand on finding precise disease
subtypes from molecular measurement to
reduce cases with over-diagnosis or under-
diagnosis.

• Single-cell sequencing technology enables
cell types discovery using gene expression
data.

è substantial need to develop a clustering
technique dedicated for genomic data.

• k-means, a broadly used and well-known
clustering technique, was found to be
efficient for clustering cancer datasets.

Problems
• k-means algorithm is sensitive to initial
conditions and does not guarantee to
produce global optimal clusters.

• The number of clusters must be given as
an input parameter for the k-means
clustering technique. Without any prior
knowledge of the data, determining the
appropriate number of clusters is
considered a difficult task.

Challenges
• Finding the global optimal cluster for k-
means algorithm and, at the same time,
determining the appropriate number of
cluster for genomic data without prior
knowledge.

Our solution: Multi-objective Genetic
algorithm- based K-means Algorithm
(MGKA)
Use Multi-objective Genetic Algorithm to
simultaneously optimize k-means solutions
and find the appropriate number of clusters
with Silhouette and Davies–Bouldin indices.
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Multi-objective genetic algorithm-based k-means
• Real-number center-based encoding is used to present
k-means solutions with dynamic number of clusters.

Fig. 1: Chromosome encoding of a two-cluster solution for two-
dimension data. By toggling the center status, the maximum number
of clusters it can present is three.

Validation results
• We use Adjusted Rand Index (ARI) to measure
the similarity between clustering results and
the ground truth.
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Validation data
• We compare our method with the original k-means on
simulated datasets with high number of clusters.

• Eight real disease datasets from Gene Expression
Omnibus and Broad Institute with known subtypes are
used to evaluate our method in comparison with other
methods developed for disease subtyping including
Similarity Network Fusion (SNF) [3], Consensus
Clustering (CC) [4], and iClusterPlus [5].

• Four single-cell datasets with known cell types are
used to evaluate our method in comparison with other
methods developed for single-cell clustering including
SC3 [6] and SEURAT [7].

Table 1: Performance of MGKA on simulated data
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• Offspring are produced using simulated binary crossover
[1]

Fig. 2: Simulated 
binary  crossover 
procedure by two 
parents with the 
same number of 
clusters.

Fig. 3: Offspring resulted from
simulated binary crossover.

• NSGA-II [2] is used to optimize objectives in the
selection operator.

• Within cluster sum of
squares and two clustering
indices are used to select the
parents: i) Davies-Bouldin
index: measures how well
the clusters are separated,
and ii) Silhouette index:
measures how similar an
object is to its own cluster
compared to other clusters.
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Fig. 5. Non-dominated Sorting Genetic Algorithm (NSGA-II) where t is the
population generation, P is the parents, Q is the offspring, and Fi is the
Pareto front level ith.

We then select the best solution along each objective. If the
best solutions for two index value are different, each solution
will be ranked based on its other index value compared to
other solutions in our pareto set. The solution that has better
rank will be extracted as the ultimate solution.

IV. EXPERIMENTAL RESULTS

A. Results on simulation

We first validate the framework from a theoretical perspec-
tive by comparing the new method with the original k-means.
In this section, we compare the performance of MGKA with
k-means on generated datasets with a large number of clusters.
It is known that k-means does not produce a global optimum.
Therefore, we run k-means multiple times in order to obtain
results that are at least close to global optimum. Here we set
the number of times we run k-means equal to the population
size of MGKA, which is 50. The simulation generates datasets
with the number of clusters from 10 to 15; each cluster is well
separated and has 10 members. The landscape of the simulated
data with k = 10 is described as in Figure 6. We use the
kmeans function in stats package, R programming language
to obtain the clustering result from k-means algorithm.

The average result of 30 runs for each k is represented in
Table I. We use the within-cluster sum of square errors and
Adjusted Rand Index (ARI) to compare the result between two
algorithms. Table I shows that MGKA outperforms k-means
in all of the datasets. Adjust Rand Index (ARI) values for
clusters produced by MGKA in all datasets show that MGKA
can easily achieve the global optima in all simulated datasets.
K-means, on the other hand, produces sub-optimal solutions
most of the times. The average ARI of 30 runs also shows
that MGKA is much more stable compared to k-means. The
within-cluster sum of squares shows significant differences
among clusters produced by MKGA and k-means. The results
from k-means are also too far away from optimal solutions.
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Fig. 6. The landscape of simulated dataset with the number of cluster is ten.
Each cluster is well separated to each other and has ten members.

TABLE I
WITHIN CLUSTER SUM OF SQUARE ERRORS AND ADJUST RANDOM INDEX

(ARI) OF CLUSTERING RESULT PRODUCED BY MGKA AND K-MEANS
WITH RESTARTS.

#k #Samples WithinSS ARI
MGKA k-means MGKA k-means

10 100 457.237 782.051 1 0.963
11 110 461.326 996.554 1 0.954
12 120 520.686 913.989 1 0.939
13 130 598.247 910.19 0.993 0.914
14 140 547.731 1136.477 1 0.931
15 150 630.188 1074.967 1 0.929

B. Results on cancer omics data

Here we demonstrate the application MGKA in the context
of cancer subtyping using multi-omics data. In order to assess
the performance of MGKA, we compare the results of MGKA
with those of wide used methods in this field, including Con-
sensus Clustering (CC) [19] – a resampling-based approach,
Similarity Network Fusion (SNF) [20] – a graph-theoretical
approach, and iClusterPlus [21] – a mixture model approach.
We CC, SNF, and iClusterPlus, we use the default param-
eter settings. The parameters for MGKA after this section
are: population size = 20, the number of generations = 20,
crossover probability = 1, mutation probability = 0.01, and
k-means operator probability = 0.5.

First, we compare the four methods using eight mRNA
gene expression datasets with known disease subtypes.
The 5 datasets with accession id GSE10245, GSE19188,
GSE43580, GSE15061, and GSE14924 were downloaded
from Gene Expression Omnibus (www.ncbi.nlm.nih.gov/
geo/). The other three datasets were downloaded from

TABLE II
DESCRIPTION OF THE EIGHT MRNA DATASETS USED IN OUR ANALYSIS. THE TOP FIVE DATASETS WERE DOWNLOADED FROM THE GENE EXPRESSION

OMNIBUS. THE BOTTOM THREE DATASETS WERE DOWNLOADED FROM THE BROAD INSTITUTE WEBSITE.

Datasets #Class #Sample #Feature Platform Description

GSE10245 [35] 2 58 19851 hgu133plus2 40 adenocarcinomas and 18 squamous cell carcinomas
GSE19188 [36] 3 91 19851 hgu133plus2 45 adenocarcinomas, 19 large cell carcinomas, and 27 squamous cell carcinomas
GSE43580 [37] 2 150 19851 hgu133plus2 77 adenocarcinomas and 73 squamous cell carcinomas
GSE14924 [38] 2 20 19851 hgu133plus2 10 acute myeloid leukemia CD4 T cell and 10 CD8 T cell
GSE15061 [39] 2 366 19851 hgu133plus2 202 acute myeloid leukemia samples and 164 myelodyplastic syndrome samples
Lung2001 [40] 4 237 8641 hgu95a 190 adenocarcinomas, 21 squamous cell carcinomas, 20 carcinoid, and 6 small-

cell lung carcinomas
AML2004 [41], [42] 3 38 5000 hgu6800 11 acute myeloid leukemia, 19 acute lymphoblastic leukemia B cell, and 8 T

cell
Brain2002 [43] 5 42 5299 hgu6800 10 meduloblastomas, 10 malignant gliolas, 10 atypical teratoid/rhaboid tumors,

4 normal cerebellums, and 8 primitive neuroectodermal tumors

the Broad Institute: Lung2001 (www.broadinstitute.org/mpr/
lung/), AML2004 (www.broadinstitute.org/cancer/pub/nmf),
and Brain2002 (www.broadinstitute.org/MPR/CNS/). Details
of the 8 datasets are described in Table II. The results of clus-
tering for eight mRNA datasets are represented in Table III. We
use the Adjusted Rand Index (ARI) to assess the performance
of the resulted subtypes. Among the eight datasets that we
tested, MGKA outperforms other methods in six methods.
SNF and iClusterPlus however crashed with GSE14924 and
AML2004 and are represented with NA in the table.

TABLE III
THE PERFORMANCE OF MGKA, CONSENSUS CLUSTERING (CC),
SIMILARITY NETWORK FUSION (SNF), AND ICLUSTERPLUS IN

DISCOVERING SUBTYPES FROM GENE EXPRESSION DATA. FOR EACH
DATASET (ROW), CELLS HIGHLIGHTED IN GREEN HAVE THE HIGHEST

ADJUSTED RAND INDEX (ARI).

Dataset Samples #Class MGKA CC SNF iCluster+

GSE10245 58 2 0.80 0.32 0.38 0.22

GSE19188 91 3 0.84 0.6 0.12 0.19

GSE43580 150 2 0.44 0.37 0.15 0.21

GSE15061 366 2 0.78 0.43 0.05 0.15

GSE14924 20 2 1.00 0.25 NA 0.73

Lung2001 237 4 0.54 0.11 0.28 0.11

AML2004 38 3 0.41 0.56 0.17 NA

Brain2002 42 5 0.15 0.46 0.13 0.32

Secondly, we compare the four methods using DNA methy-
lation datasets from The Cancer Genome Atlas (TCGA). In
the comparison, we use eight datasets downloaded from the
TCGA website (cancergenome.nih.gov and firebrowse.org).
Eight datasets include Glioblastoma multiforme (GBM), Thy-
moma (THYM), Glioma (GBMLGG), Kidney renal papillary
cell carcinoma (KIRP), Kidney Chromophobe (KICH), Uveal
Melanoma (UVM), Pancreatic adenocarcinoma (PAAD), and
Adrenocortical carcinoma (ACC). These datasets, however, do
not contain subtypes for each disease. Instead, with known
survival outcome, we use Cox regression to assess the survival
difference of the discovered subtypes. The Cox p-values of
the subtypes discovered by each of the four approaches are
presented in table IV. Again, among eight datasets, MGKA
outperforms other methods in six datasets. Moreover, while

MGKA can discover subtypes with significant cox-p value
(at the threshold of 5%) for all datasets, CC, SNF, and
iClusterPlus can only discover subtypes with significant cox-p
value for three, seven, and five datasets respectively.

TABLE IV
THE PERFORMANCE OF MGKA, CONSENSUS CLUSTERING (CC),
SIMILARITY NETWORK FUSION (SNF), AND ICLUSTERPLUS IN

DISCOVERING SUBTYPES FROM DNA METHYLATION DATA. CELLS
HIGHLIGHTED IN YELLOW HAVE SIGNIFICANT COX P-VALUES AT THE

THRESHOLD OF 5%. FOR EACH DATASET (ROW), CELLS HIGHLIGHTED IN
GREEN HAVE THE MOST SIGNIFICANT COX P-VALUE.

Dataset Samples MGKA CC SNF iCluster+

GBM 273 1.2e�4 0.075 0.017 0.103

THYM 119 0.006 0.053 0.04 0.068

GBMLGG 510 3.3e�16 3e�9 1.9e�12 5.4e�14

KIRP 271 5.1e�18 0.299 2.8e�13 0.013

KICH 65 1e�4 0.88 1e�4 0.788

UVM 80 7.1e�4 9.8e�4 0.005 0.003

PAAD 178 0.002 6.6e�4 0.346 3.8e�4

ACC 79 6.2e�4 0.06 0.047 6.6e�5

C. Results on single-cell transcriptomics data

We also test our method on four different single-cell datasets
with known cell types (Table V). Yan’s dataset contains 90
human embryo samples in six different stages. Goolam’s, and
Deng’s datasets contain mouse embryo samples in different
stages. Pollen’s dataset contains 301 samples of different
human tissues. The references for each dataset are given in
Table V. We compare our method with SC3 [22] method - a
consensus clustering method of single-cell RNA-seq data, and
SEURAT [23] - a graph-based clustering approach for single-
cell RNA-seq data. Table V shows the ARI values obtained
by MGKA, SC3, and SEURAT on those four datasets. MGKA
produces the best clusters in three out of four tested datasets.

V. CONCLUSION AND FUTURE WORK

K-means clustering is a simple, fast and unsupervised
approach. However, it suffers from some limitations such as
the initial centroids problem and the selection of the appro-
priate number of clusters. This paper describes and evaluates

Table 2: Performance of MGKA on disease datasets

TABLE V
THE PERFORMANCE OF MGKA, SC3, AND SEURAT IN DISCOVERING

CELL TYPES FROM GENE EXPRESSION DATA. FOR EACH DATASET (ROW),
CELLS HIGHLIGHTED IN GREEN HAVE THE HIGHEST ADJUSTED RAND

INDEX (ARI). MGKA PRODUCES CLUSTERS WITH HIGHEST ARI VALUE
FOR THREE OUT OF FOUR DATASETS.

Dataset Samples #Class MGKA SC3 SEURAT

Yan (GSE36552) [44] 90 6 0.67 0.63 0.53

Goolam (E-MTAB-3321) [45] 124 5 0.72 0.63 0.57

Deng (GSE45719) [46] 268 6 0.60 0.55 0.51

Pollen (SRP041736) [47] 301 11 0.88 0.93 0.70

a new approach that uses an evolutionary multi-objective
algorithm to find a set of pareto optimal solutions along
three measures of cluster goodness. A new representation
directly addresses the initial centroid problem and the non-
dominated sorting genetic algorithm maintains a population
with a diverse number of high performing clusters. That is,
while many current approaches integrate genetic algorithm
with k-means to find the global optimum for a fixed number of
clusters, our method, MGKA, is able to maintain and evaluate
solutions with different numbers of clusters at the same time.
By using simulated binary crossover, our crossover operator
is less destructive compared to naive one-point crossover and
generates offspring close to the parents rather than exchanging
dataset members or center coordinates.

The multi-objective genetic algorithm allows us to optimize
the solution with different cluster validity index so that at the
same time, we can also evaluate the appropriate number of
clusters. By using Davies & Bouldin index and Silhouette
index, the best solutions will have the most similar members
in the same cluster and have well separated clusters. Our
experiment on different simulated datasets shows that MGKA
is better than naive k-means in finding the global optimum.
Other experiments on 16 disease datasets and five single-cell
datasets indicate that MGKA outperforms other state-of-the-art
algorithms discovering disease subtypes and cell types. This
provides strong evidence of the viability of our approach for
clustering applications especially in the biomedical domain.
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