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Validation results

* We use Adjusted Rand Index (ARI) to measure
the similarity between clustering results and
the ground truth.

Backgrounds

 Advances in high-throughput technologies
produces a huge amount of genomic data.

Multi-objective genetic algorithm-based k-means

 Real-number center-based encoding is used to present
k-means solutions with dynamic number of clusters.
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Table 1: Performance of MGKA on simulated data

k-means, a broadly used and well-known
clustering technique, was found to be
efficient for clustering cancer datasets.
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Problems

k-means algorithm i1s sensitive to initial
conditions and does not guarantee to
produce global optimal clusters.

The number of clusters must be given as
an 1nput parameter for the k-means
clustering technique. Without any prior

same number of
clusters.
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Crossover operator

« Within cluster sum of
squares and two clustering
indices are used to select the
parents: 1) Davies-Bouldin
index: measures how well
the clusters are separated,
and 11) Silhouette index:
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Table 2: Performance of MGKA on disease datasets
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measures how similar an
object is to its own cluster
compared to other clusters.
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Fig. 3: Offspring resulted from

simulated binary crossover.

NSGA-II [2] is used to optimize objectives in the
selection operator.

Dataset #Class MGKA SC3 SEURAT
Yan (GSE36552) 90 6 0.67 0.63 0.53

Samples

Goolam (E-MTAB-3321) 124 S 0.72 0.63 0.57

Deng (GSE45719) 268 6 01600 0.55 0.51

Challenges .

 Finding the global optimal cluster for k-
means algorithm and, at the same time,
determining the appropriate number of
cluster for genomic data without prior
knowledge.

Pollen (SRP041736) 301 11 0.88 0.93 0.70

Table 3: Performance of MGKA on single-cell datasets

Validation data

« We compare our method with the original k-means on
simulated datasets with high number of clusters.
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Four single-cell datasets with known cell types are
used to evaluate our method in comparison with other

methods developed for single-cell clustering including
SC3 |6] and SEURAT [7].
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(MGKA)

Use Multi-objective Genetic Algorithm to
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and find the appropriate number of clusters
with Silhouette and Davies—Bouldin indices.
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