
RIA: A NOVEL REGRESSION-BASED IMPUTATION
APPROACH FOR SINGLE-CELL RNA SEQUENCING

Bang Tran, Duc Tran, Hung Nguyen, Nam Sy Vo and Tin Nguyen*
Department of Computer Science and Engineering, University of Nevada, Reno

Contact: tinn@unr.edu , Website: https://bioinformatics.cse.unr.edu/

Background Methodology

Results

Conclusion References

Advances in single-cell technologies have shifted genomics
research from the analysis of bulk tissues toward a
comprehensive characterization of individual cells. This holds
enormous opportunities for both basic biology and clinical
research. However, low amount of mRNA available within
individual cells leads to the excess amount of zero counts
caused by dropout events.

hypothesis testing
approach to determine the set of genes that are likely to be

impacted by dropouts

Objectives

Develop an imputation method, RIA, that can reliably impute
missing values from single-cell data. RIA consists of two
modules. The first module performs a hypothesis testing to
identify the values that are likely to be impacted by the dropout
events. The second module estimates the missing value using a
robust regression approach.

Data: 5 datasets with a total of 3,535 cells.
Metric: Adjusted Rand Index (ARI) [8], Jaccard Index [9] and
Purity Index [10].
Methods: scImpute [15],MAGIC [16], t-SNE [17].
Results: RIA produces the best ARI values, preserve the
transcriptomics landscape and significantly elucidates the cell
lineage identification.

Fig. 2. RIA preserves the transcriptomics landscape for Zeisel [14] dataset.

Hypothesis Testing and Identification of Dropout : to
determine genes that are likely to be impacted by dropouts.
Genes that are not impacted by dropouts, the log-transformed
expression values are normally distributed. We use z-test to
determine whether a zero is impacted by the dropout events.
Original data is divided into two sets of genes: a set G that
include genes affected by dropout (imputable set), and a set M
that have high confidence of not being affected by dropout.
(training set)

Regression-based Imputation:
• We select genes from the training set that are highly

correlated with the gene we need to impute.
• We train the linear model using these highly-correlated

genes and then estimate the missing values

• Outperforms existing state-of-the-art
approaches in cell group identification.

• Recover temporal trajectories in
embryonic development stages

• RIA is fast and is able to impute thousands
of cells with tens of thousands of genes in
minutes

Future work

We plan to utilize the perturbation clustering
[3],[4],[6].

Fig. 1. The overall pipeline of RIA.
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